www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Abbildung mit Skalarprodukt
Abbildung mit Skalarprodukt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung mit Skalarprodukt: geometrische Bedeutung...
Status: (Frage) beantwortet Status 
Datum: 14:05 Do 24.04.2008
Autor: sie-nuss

Aufgabe
Was bedeutet die Abbildung [mm] f:\IR^n \to \IR^n [/mm] mit [mm] v\mapsto2a-v [/mm] wobei a [mm] \in \IR^n [/mm] mit [mm] \parallel a\parallel=1 [/mm] geometrisch?

Hat f Eigenwerte und wo liegen die Eigenvektoren?  

Hallo Leute,

also wenn a ein Einheitsvektor ist (sagen wir dass die 1 an i-ter Stelle kommt), dann drehen sich alle Vorzeichen vom Vektor v um, außer die i-Koordinate. Im [mm] \IR^2 [/mm] heißt das eine Spiegelung an einer der Achsen, im [mm] \IR^3 [/mm] Spiegelungen an Ebenen. (Soweit ist es doch richtig oder?)
Was bedeutet es jetzt für alle n? Und was wenn ich nicht einen Einheitsvektor einsetze? Ich hab das ausprobiert und es kommen sehr krumme Sachen dabei raus...

Achso es gibt wohl 2 Eigenwerte...

Liebe Grüße!
sie-nuss

Bin sehr verwirrt

        
Bezug
Abbildung mit Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 05:14 Fr 25.04.2008
Autor: angela.h.b.


> Was bedeutet die Abbildung [mm]f:\IR^n \to \IR^n[/mm] mit
> [mm]v\mapsto2a-v[/mm] wobei a [mm]\in \IR^n[/mm] mit [mm]\parallel a\parallel=1[/mm]
> geometrisch?
>  
> Hat f Eigenwerte und wo liegen die Eigenvektoren?
> Hallo Leute,
>
> also wenn a ein Einheitsvektor ist (sagen wir dass die 1 an
> i-ter Stelle kommt), dann drehen sich alle Vorzeichen vom
> Vektor v um, außer die i-Koordinate. Im [mm]\IR^2[/mm] heißt das
> eine Spiegelung an einer der Achsen, im [mm]\IR^3[/mm] Spiegelungen
> an Ebenen. (Soweit ist es doch richtig oder?)
> Was bedeutet es jetzt für alle n? Und was wenn ich nicht
> einen Einheitsvektor einsetze? Ich hab das ausprobiert und
> es kommen sehr krumme Sachen dabei raus...
>
> Achso es gibt wohl 2 Eigenwerte...
>
> Liebe Grüße!
>  sie-nuss

Hallo,

Du hast doch gar nicht so übel angefangen.

Sei doch ein bißchen nett zu Dir und wähle eine Basis, deren erster Basisvektor a ist.
Diese kannst Du durch [mm] v_2,...v_n [/mm] so zu einer Basis des [mm] \IR^n [/mm] ergänzen, daß die [mm] v_i [/mm] senkrecht sind zu a.

Stelle dann die Matrix bzgl dieser Basis auf. Hieran siehst Du alles.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de