www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Abbildungen Beweis
Abbildungen Beweis < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen Beweis: letzte Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:51 So 06.11.2011
Autor: ikaruga

Aufgabe
Seinen X und Y gegebene Mengen. Formulieren sie eine Bedingung an [mm] f:X\toY, [/mm] die notwendig und hinreichend dafür ist, dass für alle [mm] B\subsetY [/mm] gilt:
[mm] f(f^{-1}(B))=B [/mm]
Beweisen sie ihre Behauptung (Als Bedingung darf nicht die Aussage gewählt werden)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
nachdem ich heute fast den gesamten Tag Mathe gemacht habe, benötige ich nun Hilfe bei der letzten übrig gebliebenen Aufgabe. Am besten ein Lösungsweg. Ich weis, dass ist nicht förderlich aber ich habe heute schon sehr viele Aufgaben gelöst und nun will mein Kopf nicht mehr, leider muss das zu morgen fertig sein.

Ansatz durch Teilmengen und Umformen.
Es wäre toll wenn ihr mir helfen könntet. Ich bin heute echt durch, werde mich demnächst dann auch hier mehr beteiligen, heute kann ich nicht mehr. Mir ist auch klar, dass ich fast alle Forenregeln durch diesen post breche, aber nur einmal, bitte :)

Grüße

        
Bezug
Abbildungen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 So 06.11.2011
Autor: Schadowmaster

moin,

Weißt du was [mm] $f^{-1}(B)$ [/mm] ist?
Das ist die Menge aller x, die in die Menge B abgebildet werden, also formal:
[mm] $f^{-1}(B) [/mm] := [mm] \{ x | f(x) \in B \}$ [/mm]
Nun sollst du zeigen, dass [mm] $f(f^{-1}(B)) [/mm] = B.
Die eine Teilmengenrelation gilt sofort aus der Definition, denn wenn du die Menge aller Punkte, die auf B abgebildet wird, abbildest, landest du natürlich in der Menge B.
Aber die andere gilt nicht zwangsläufig.
Also es könnte passieren, dass du auf diese Art nicht ganz B erwischst.
Das ist genau dann der Fall, wenn f selber schon nicht ganz B erwischt.

Wieso das alles gilt und wie du das für deine Aufgabe nutzen darfst wirst du sicher schnell herausfinden. ;)

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de