www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abbildungen/Funktionen
Abbildungen/Funktionen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen/Funktionen: Rückfrage? SOS?
Status: (Frage) beantwortet Status 
Datum: 11:20 Sa 29.10.2005
Autor: Chocbooty83

a) f(x) = -2x+1
b) g(x) = 2x²+x-1
c) h(x) = loga10(3x-1)
d) k(x) = -x²+2x+1

Wie kann ich den Definitionsbereich bestimmen und wie kann ich für die bijektiven Funktionen die Umkehrfunktion bestimmen? oder wie lautet sie?


Und ich hab folgendes rausbekommen und wollte euch nun fragen ob dies so richtig ist?

a)
f(x) = -2x + 1; D = IR; W = IR; bijektiv
x = -2f-1(x) + 1; f-1(x) = -x/2 + 1/2; W = IR; D = IR; bijektiv

b)
g(x) = 2x2 + x - 1; D = [-1/4;¥); W = IR \ (-5/8;¥); bijektiv
x = 2(g-1(x))2 + g-1(x) - 1
2(g-1(x))2 + g-1(x) - x - 1 = 0
g-1(x) = (-1 + 9 + 8x)/2; W = [-1/4;¥); D = IR \ (-5/8;¥); bijektiv

g(x) = 2x2 + x - 1; D = (-¥;-1/4]; W = IR \ (-5/8;¥); bijektiv
g-1(x) = (-1 - 9 + 8x)/2; W = (-¥;-1/4]; D = IR \ (-5/8;¥); bijektiv

c)
h(x) = log(3x-1); D = (1/3;¥); W = (-¥;¥); bijektiv
x = log(3h-1(x)-1)
ex = 3h-1(x) - 1
h-1(x) = 1/3*(ex + 1); W = (1/3;¥); D = (-¥;¥) ; bijektiv

d)  
k(x) = -x2+2x+1; D = [-1;¥); W = (-¥;0]; bijektiv
x = -(k-1(x))2+2k-1(x)+1
(k-1(x))2 + 2k-1(x) - x2 + 1
k-1(x) = -1 - x; W = [-1;¥); D = (-¥;0]; bijektiv.

k(x) = -x2+2x+1; D = [-¥;-1); W = (-¥;0]; bijektiv
x = -(k-1(x))2+2k-1(x)+1
k-1(x) = -1 + x; W = [-¥;-1); D = (-¥;0]; bijektiv.

ps. das komische zeichen soll das unendlich zeichen sein, irgendwie habe das nicht hinbekommen

Ich hoffe ihr könnte mir helfen lg

        
Bezug
Abbildungen/Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Sa 29.10.2005
Autor: mathmetzsch

Hallo,

bei deiner ersten Funktion stimmt alles.

Bei der zweiten bekomme ich schon Bauchschmerzen. Was soll den das mit dem Definitionsbereich. Der ist auf jeden Fall ganz [mm] \IR. [/mm] Du kannst doch alle reellen Zahlen mit der Funktion auswerten. Desweiteren ist diese Funktion nicht bijektiv. Lass' sie dir mal plotten, dann siehst du, dass die achsensymmetrisch ist und folglich unmöglich injektiv sein kann.

3. Ich verstehe deine komischen Symbole da nicht. Jedenfalls ist diese Funktion f.a. x aus [mm] \IR [/mm] mit x>1/3 definiert. Der Wertebereich liegt zwischen
[mm] -\infty [/mm] und 2.
Diese ist auch bijektiv und deine Umkehrfunktion stimmt auf den ersten Blick.

4. Auch hier ist der Def.bereich ganz [mm] \IR. [/mm]
Der Graph dieser Funktion ist auf jeden Fall eine nach unten offene Parabel und damit auch wieder nicht injektiv und nicht überall umkehrbar.

VG mathmetzsch

Bezug
        
Bezug
Abbildungen/Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 29.10.2005
Autor: informix

Hallo Chocbooty83,
[willkommenmr]

benutze doch bitte unseren Formeleditor, dann musst du auch kein Phantasie-Zeichen fpr [mm] \infty [/mm] erfinden.

> a) f(x) = -2x+1
> b) g(x) = 2x²+x-1
> c) h(x) = loga10(3x-1)
> d) k(x) = -x²+2x+1
>
> Wie kann ich den Definitionsbereich bestimmen und wie kann
> ich für die bijektiven Funktionen die Umkehrfunktion
> bestimmen? oder wie lautet sie?

Wenn du schnell den Definitionsbereich finden willst, zeichnest du die Funktion mit []FunkyPlot.

>
>
> Und ich hab folgendes rausbekommen und wollte euch nun
> fragen ob dies so richtig ist?
>  
> a)
> f(x) = -2x + 1; D = IR; W = IR; bijektiv [daumenhoch]
> x = -2f-1(x) + 1; f-1(x) = -x/2 + 1/2; W = IR; D = IR; bijektiv [ok]
>
> b)

$g(x) = [mm] 2x^2 [/mm] + x - 1; D = [mm] [-1/4;\infty); [/mm] W = IR \ [mm] (-5/8;\infty); [/mm]
warum hast du denn den Def.Bereich so eingeschränkt?!
meinst du damit den Scheitelpunkt, damit die Funktion zwangsweise bijektiv wird?
Aber du solltest doch nur die bijektiven Funktionen umkehren? [verwirrt]

> bijektiv
> x = 2(g-1(x))2 + g-1(x) - 1
> 2(g-1(x))2 + g-1(x) - x - 1 = 0
> g-1(x) = (-1 + 9 + 8x)/2; W = [-1/4;¥); D = IR \ (-5/8;¥);
> bijektiv
>
> g(x) = 2x2 + x - 1; D = (-¥;-1/4]; W = IR \ (-5/8;¥);
> bijektiv
> g-1(x) = (-1 - 9 + 8x)/2; W = (-¥;-1/4]; D = IR \ (-5/8;¥);
> bijektiv
>
> c)
> h(x) = log(3x-1); D = (1/3;¥); W = (-¥;¥); bijektiv
> x = log(3h-1(x)-1)
> ex = 3h-1(x) - 1
> h-1(x) = 1/3*(ex + 1); W = (1/3;¥); D = (-¥;¥) ; bijektiv
>
> d)  
> k(x) = -x2+2x+1; D = [-1;¥); W = (-¥;0]; bijektiv
> x = -(k-1(x))2+2k-1(x)+1
> (k-1(x))2 + 2k-1(x) - x2 + 1
> k-1(x) = -1 - x; W = [-1;¥); D = (-¥;0]; bijektiv.
>
> k(x) = -x2+2x+1; D = [-¥;-1); W = (-¥;0]; bijektiv
> x = -(k-1(x))2+2k-1(x)+1
> k-1(x) = -1 + x; W = [-¥;-1); D = (-¥;0]; bijektiv.
>

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de