www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Optik" - Abbildungsgleichung
Abbildungsgleichung < Optik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsgleichung: Umstellen
Status: (Frage) beantwortet Status 
Datum: 14:27 Sa 10.07.2010
Autor: elixia.elixia

Aufgabe
Wo muss die Linse (a, a') stehen, und welcher Abbildungsmaßstab ergibt sich?

f'=40
s=200

Hallo liebe Mitglieder,

die Aufgabe könnte ich mit Hilfe meines Taschenrechners Lösen, denn der kann ohne das ich die Abbildungsgleichung umstelle mir das Ergebnis für a ausrechnen.

Meine Frage ist nun wie stelle ich die Abbildungsgleichung nach a um? Ich versuche das jetzt zum x ten mal aber komme leider nicht besonders weit.

Da s = a'-a habe ich das a' durch s+a ersetzt

[mm] \bruch{1}{f'}=\bruch{1}{s+a}-\bruch{1}{a} [/mm]

jetzt komme ich aber nicht weiter bzw. jeglicher Versuch die Gleichung umzustellen ist gescheitert.

Ich hoffe Ihr könnt mir helfen.

Lg Maike


        
Bezug
Abbildungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Sa 10.07.2010
Autor: leduart

Hallo
deine Bezeichnungen sind unüblichm was ist a,a'? was bezeichnest du mit s?
Wenn deine Gleichung richtig ist, einach die Gleichung mit allen Nennerb multiplizieren. (sollte man immer bei Bruchgleichungen)
Gruss leduart

Bezug
                
Bezug
Abbildungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Sa 10.07.2010
Autor: elixia.elixia

Hallo,

leider hilft mir diese Antwort überhaupt nicht weiter!!! Ich wollte doch nur Hilfe bei der Umstellung nach a! Alles andere ist ja egal. Das ich das erweitern muss, weiß ich auch nur komme ich nicht bis zum ende.

Evtl. noch jemand der mir wirklich helfen kann??

LG Maike

Bezug
                        
Bezug
Abbildungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Sa 10.07.2010
Autor: schachuzipus

Hallo Maike,

> Hallo,
>  
> leider hilft mir diese Antwort überhaupt nicht weiter!!!
> Ich wollte doch nur Hilfe bei der Umstellung nach a! Alles
> andere ist ja egal. Das ich das erweitern muss, weiß ich
> auch nur komme ich nicht bis zum ende.

Ok, wenn es nur um die Auflösung der Gleichung nach a geht:

[mm] $\frac{1}{f'}=\frac{1}{s+a}-\frac{1}{a}$ [/mm]

Hier den ersten Bruch auf der rechten Seite mit a, den zweiten mit s+a erweitern:

[mm] $\Rightarrow \frac{1}{f'}=\frac{a}{a(s+a)}-\frac{s+a}{a(s+a)}$ [/mm]

[mm] $\Rightarrow \frac{1}{f'}=\frac{a-(s+a)}{a(s+a)}=\frac{-s}{a(s+a)}$ [/mm]

Nun gehe auf beiden Seiten zum Kehrbruch (oder multipliziere mit den Nennern durch)

[mm] $\Rightarrow f'=\frac{a(s+a)}{-s}$ [/mm]

[mm] $\Rightarrow -sf'=a^2+as$ [/mm]

[mm] $\Rightarrow a^2+as+sf'=0$ [/mm]

Nun p/q-Formel oder quadratische Ergänzung, um nach a aufzulösen ...

>
> Evtl. noch jemand der mir wirklich helfen kann??
>  
> LG Maike

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de