www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Abbildungsmatrix
Abbildungsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 17.03.2014
Autor: kRAITOS

Aufgabe
Sei V := [mm] K[x]_{\le 2} [/mm] der Vektorraum der Polynome vom Grad ≤ 2.
Sei [mm] \nu [/mm] : V → [mm] K^2 [/mm] die Abbildung p(x) [mm] \mapsto [/mm] (p(1), p′(1)).

Für die geordneten Basen B := {1, x − 1, (x − [mm] 1)^2} [/mm] von V und
K := {(1, 0), (0, 1)} von [mm] K^2 [/mm] berechne man die Matrix [mm] M_K_,_B(\nu). [/mm]
Für C := {1, x + 1, (x + 1)2} ⊆ V berechne man die Basiswechselmatrix [mm] M_B_,_C. [/mm]
Man errechne daraus dann [mm] M_K_,_C(\nu). [/mm]

Hallo,

ich weiß nicht, wie ich die Abbildung anzuwenden habe.

Sei [mm] \nu [/mm] : V → [mm] K^2 [/mm] die Abbildung p(x) [mm] \mapsto [/mm] (p(1), p′(1)).

Ein Polynom höchstens 2ten Grades wird abgebildet auf (p(1), p′(1)).

Also [mm] ax^2+bx+c \mapsto [/mm] (p(1), p´(1))

p´ ist die Ableitung des Polynoms. Wie ich jedoch nun was machen muss, weiß ich nicht...

Kann mir jemand einen Tipp geben, was ich hier genau machen muss? Vielen Dank schonmal.

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 17.03.2014
Autor: angela.h.b.


> Sei V := [mm]K[x]_{\le 2}[/mm] der Vektorraum der Polynome vom Grad
> ≤ 2.
> Sei [mm]\nu[/mm] : V → [mm]K^2[/mm] die Abbildung p(x) [mm]\mapsto[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(p(1),

> p′(1)).
>
> Für die geordneten Basen B := {1, x − 1, (x − [mm]1)^2}[/mm]
> von V und
>  K := {(1, 0), (0, 1)} von [mm]K^2[/mm] berechne man die Matrix
> [mm]M_K_,_B(\nu).[/mm]
>  Für C := {1, x + 1, (x + 1)2} ⊆ V berechne man die
> Basiswechselmatrix [mm]M_B_,_C.[/mm]
> Man errechne daraus dann [mm]M_K_,_C(\nu).[/mm]
>  Hallo,
>  
> ich weiß nicht, wie ich die Abbildung anzuwenden habe.
>  
> Sei [mm]\nu[/mm] : V → [mm]K^2[/mm] die Abbildung p(x) [mm]\mapsto[/mm] (p(1),
> p′(1)).
>  
> Ein Polynom höchstens 2ten Grades wird abgebildet auf
> (p(1), p′(1)).
>  
> Also [mm]ax^2+bx+c \mapsto[/mm] (p(1), p´(1))
>  
> p´ ist die Ableitung des Polynoms. Wie ich jedoch nun was
> machen muss, weiß ich nicht...
>  

Hallo,

wir machen ein Beispiel:

es sei [mm] p(x)=3x^2+4x+5. [/mm]

Dann ist p'(x)=6x+4, und

es ist [mm] p(1)=3*1^2+4*1+5=12, [/mm]

p'(1)=6*1+4=10.

Also ist [mm] \nu (3x^2+4x+5)=(12,10) [/mm]



> Kann mir jemand einen Tipp geben, was ich hier genau machen
> muss? Vielen Dank schonmal.

Du mußt nun für die Matrix die Bilder der Basisvektoren berechnen.

LG Angela


Bezug
                
Bezug
Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mo 17.03.2014
Autor: kRAITOS

Vielen Dank. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de