www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildungsmatrix
Abbildungsmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 08.08.2009
Autor: qsxqsx

Hallo,

...ich sollte eine abbildungsmatrix erstellen, die einen raumpunkt (x,y,z) mit dem richtungsvektor $(5,4,3)$ auf die ebene $2x -3y +z=0$ proiizierrt. ...dann gibt es die gerade [mm] $\vektor{x \\ y \\ z} [/mm] + t [mm] \cdot{} \vektor{5 \\ 4 \\ 3}$ [/mm]
...so die abbildungsmatrix soll nun diese sein: [mm] $\pmat{ -9 & 15 & -5 \\ -8 & 13 & - 4 }$ [/mm] - und noch ne letzte zeile ...ist ja egal, es geht mir ums prinzip

ich weiss nun dass man yes man auf die erste zeile so kommt: $x + (-2x [mm] +3y-z)\cdot{}5$ [/mm]

WIESO muss man bei dem ausdruck in der klammer, der von der ebene kommt die minus "umkehren"???

danke..
christian

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Sa 08.08.2009
Autor: MathePower

Hallo qsxqsx,

> Hallo,
>  
> ...ich sollte eine abbildungsmatrix erstellen, die einen
> raumpunkt (x,y,z) mit dem richtungsvektor [mm](5,4,3)[/mm] auf die
> ebene [mm]2x -3y +z=0[/mm] proiizierrt. ...dann gibt es die gerade
> [mm]\vektor{x \\ y \\ z} + t \cdot{} \vektor{5 \\ 4 \\ 3}[/mm]
> ...so die abbildungsmatrix soll nun diese sein: [mm]\pmat{ -9 & 15 & -5 \\ -8 & 13 & - 4 }[/mm]


Das muss doch eine 3x3-Matrix sein.


> - und noch ne letzte zeile ...ist ja egal, es geht mir ums
> prinzip
>  
> ich weiss nun dass man yes man auf die erste zeile so
> kommt: [mm]x + (-2x +3y-z)\cdot{}5[/mm]
>
> WIESO muss man bei dem ausdruck in der klammer, der von der
> ebene kommt die minus "umkehren"???


Um auf die Abbildungssmatrix zu kommen, schneidet man zunächst die Gerade

[mm]g:\vektor{x \\ y \\ z} + t \cdot{} \vektor{5 \\ 4 \\ 3}[/mm]

mit der Ebene

[mm]E:2x -3y +z=0[/mm]

Durch einsetzen von g in E erhält man den Wert für [mm]t=-\left(2x-3y+z\right)[/mm]

Dieser wird in die Geradengleichung eingesetzt.

Dann erhält Du einen Vektor

[mm]\pmat{a_{1}*x+b_{1}*y+c_{1}*z \\ a_{2}*x+b_{2}*y+c_{2}*z \\ a_{3}*x+b_{3}*y+c_{3}*z}[/mm]

den Du nach x,y,z sortierst:

[mm]\pmat{a_{1}*x+b_{1}*y+c_{1}*z \\ a_{2}*x+b_{2}*y+c_{2}*z \\ a_{3}*x+b_{3}*y+c_{3}*z}=\pmat{a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} }*\pmat{x \\ y \\ z}[/mm]

Die 3x3-Matrix ist jetzt die Abbildungsmatrix.


>  
> danke..
>  christian


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de