www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildungsmatrix, Rot. um z
Abbildungsmatrix, Rot. um z < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix, Rot. um z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:24 Mo 14.01.2008
Autor: mab

Aufgabe
Die lineare Abbildung [mm] \IR_{3} \to \IR_{3} [/mm] sei eine Drehung um die z-Achse mit Drehwinkel [mm] \phi [/mm] = [mm] \bruch{\pi}{4} [/mm] und anschließender Spiegelung an der x-y-Ebene. Geben Sie die Abbildungsmatrix an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Spiegelung an der x-y-Ebene ist ja nicht die Schwierigkeit, da werden die z-Koordinaten einfach mit -1 multipliziert. Wie siehts aber mit der Drehung aus? Dass sich die neuen x-/y-Komponenten aus sin und cos Beiträgen zusammensetzen hab ich mir schon überlegt, aber wie drücke ich zum Beispiel aus, dass ja, falls z.B. ein Vektor in seiner Projektion auf die x-y-Ebene bei der Drehung die x- oder y-Achse überstreicht? Dann ändert sich ja das Vorzeichen einer der Komponenten.

        
Bezug
Abbildungsmatrix, Rot. um z: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mo 14.01.2008
Autor: Event_Horizon

Hallo!

Das ist kein Problem, denn SIN und COS ändern ja auch ihr Vorzeichen, und zwar genau bei 0°, 90°, 180° und 270°, also genau dann, wenn ein Vektor eine Achse überstreicht.

Du mußt nun nur herausfinden, worauf [mm] \vektor{1\\0} [/mm] und  [mm] \vektor{0\\1} [/mm] abgebildet werden, dann kannst du die Matrix eigentlich schon hinschreiben.

Bezug
                
Bezug
Abbildungsmatrix, Rot. um z: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:16 Mo 14.01.2008
Autor: mab

Es ist also einfacher, sich vorzustellen, dass das zu Grunde liegende Koordinatensystem gedreht wird, nicht ein Element darin, liege ich damit richtig?

Dann wäre die Matrix in der Ebene quasi [mm] \bruch{1}{2}\wurzel{2}*\pmat{ 1 & -1 \\ 1 & 1 } [/mm]

Bezug
                        
Bezug
Abbildungsmatrix, Rot. um z: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 16.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de