www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildungsmatrix bestimmen
Abbildungsmatrix bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix bestimmen: Unklarheit Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 22:20 Do 13.12.2012
Autor: dummkopf_

Aufgabe
Es sei $f$ eine lineare Abbildung eines 4-dimensionalen Vektorraums $V$ mit der Basis [mm] $x_1, x_2, x_3, x_4$ [/mm] in einen 3-dimensionalen Vektorraum $W$ mit der Basis [mm] $y_1, y_2, y_3$, [/mm] die durch folgende Angaben definiert ist:

[mm] $f(x_1) [/mm] = [mm] 5y_1 [/mm] + [mm] 3y_2 [/mm] + [mm] 2y_3$ [/mm]

[mm] $f(x_2) [/mm] = [mm] 3y_1 [/mm] + [mm] 4y_2 [/mm] - [mm] y_3$ [/mm]

[mm] $f(x_3) [/mm] = [mm] -y_1 [/mm] + [mm] 2y_2 [/mm] - [mm] 3y_3$ [/mm]

[mm] $f(x_4) [/mm] = [mm] -2y_1 [/mm] + [mm] y_2 [/mm] - [mm] 3y_3$ [/mm]


Geben Sie die zu $f [mm] \in$ [/mm] Linab($V, W$) bezüglich der vorgegebenen Basen gehörige Matrix an.

Hallo erst mal!
Ich dachte immer, eine lineare Abbildung würde aus einem Urbild (aus dem Vektorraum $V$) ein Bild (im Vektorraum $W$) machen. Aber hier werden, um ein Bild von $x [mm] \in [/mm] V$ zu kreieren, schon Bildvektoren $y$ verwendet. Wie kann das sein? Erhält man die $y$-Vektoren nicht überhaupt erst dadurch, dass man irgendetwas mit den $x$-Vektoren anstellt?

Und wenn man eine lineare Abbildung aus dem 4-dimensionalen Raum in den 3-dimensionalen Raum produziert, dann werden doch aus den 4-dimensionalen Vektoren plötzlich 3-dimensionale ... aber hier hat der Bildvektor doch auch wieder 4 Dimensionen? Jede Koordinate des Bildvektors $f(x)$ ergibt sich durch die entsprechenden Gleichungen im Gleichungssystem und da zähle ich 4.

Was übersehe ich hier? Wenn ich das verstanden habe, bekomme ich die Lösung der Aufgabe bestimmt selbst hin, ich habe nur im Moment gar keine Ahnung, wie ich da überhaupt rangehen soll, weil mir das Ganze irgendwie widersprüchlich vorkommt. Vielen Dank für jegliche Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildungsmatrix bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Do 13.12.2012
Autor: black_jaguar

Hi schau mal in Wikipedia mal unter Abbildungsmatrix nach fallst du es noch nicht gemacht hast. Ist so zimmlich gut erklärt.

Bezug
        
Bezug
Abbildungsmatrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Do 13.12.2012
Autor: leduart

Hallo
im Bildraum hast du nur die 3 basisvektoren y1,y2,y3
wenn du die bilder von 4 beliebigen lin unabh, Vektoren aus den [mm] R^4 [/mm] kennst, dann kannst du damit- da die Abb- linear ist die Bilder aller Vektoren bilden! aus deren linearkombination.
so kann man eine lineare Abbildung also insbesondere angeben, indem man die bilder der Basisvektoren angibt.
hier werden die Bilder alle durch die 3 Basisvektoren von W angegeben. [mm] f(\vektor{1\\0\\0\\0)}=\vektor{5 \\3\\2} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de