www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildungsmatrix bilden
Abbildungsmatrix bilden < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 12.03.2012
Autor: JoeSunnex

Aufgabe
Die Abbildung P soll den Raum in Richtung der 1. Achse auf die Ebene E (E : x - y = 0) projizieren. Begründen Sie, dass die erste Spalte der Abbildungsmatrix P nur Nullen enthält und bestimmen Sie die zweite und dritte Spalte der Matrix P.

Entnommen aus dem Landesabitur 2007 Hessen B2


Hallo,

mal wieder eine Frage zu linearen Abbildungen. Mein Ansatz war einen allgemeinen Punkt P zu definieren $P(x|y|z)$ und dann folgende Gerade zu formulieren:

$g : [mm] \vec{x} [/mm] = [mm] \vektor{x \\ y \\ z} [/mm] + r [mm] \cdot \vektor{1 \\ 0 \\ 0}$ [/mm]

Dann ermittle ich einen Schnittpunkt mit der Ebene, für den gilt $r = -x + y$ => in g eingesetzt bedeutet das:
[mm] \vec{x} [/mm] = [mm] \vektor{x \\ y \\ z} [/mm] + (-x + y) [mm] \cdot \vektor{1 \\ 0 \\ 0} [/mm] = [mm] \vektor{y \\ y \\ z}$ [/mm]

Daher kommt eine fehlerhafte Matrix $P = [mm] \pmat{ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1}$ [/mm] heraus, in den Lösungen steht:
$P = [mm] \pmat{ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}$ [/mm]

Wie kommt man darauf?

Mal eine allgemeine Frage: Wie kann man auf dem leichtesten Weg die Ebene x - y = 0 skizzieren?

Grüße

Joe

        
Bezug
Abbildungsmatrix bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mo 12.03.2012
Autor: MathePower

Hallo JoeSunnex,

> Die Abbildung P soll den Raum in Richtung der 1. Achse auf
> die Ebene E (E : x - y = 0) projizieren. Begründen Sie,
> dass die erste Spalte der Abbildungsmatrix P nur Nullen
> enthält und bestimmen Sie die zweite und dritte Spalte der
> Matrix P.
>  
> Entnommen aus dem Landesabitur 2007 Hessen B2
>  
> Hallo,
>
> mal wieder eine Frage zu linearen Abbildungen. Mein Ansatz
> war einen allgemeinen Punkt P zu definieren [mm]P(x|y|z)[/mm] und
> dann folgende Gerade zu formulieren:
>  
> [mm]g : \vec{x} = \vektor{x \\ y \\ z} + r \cdot \vektor{1 \\ 0 \\ 0}[/mm]
>  
> Dann ermittle ich einen Schnittpunkt mit der Ebene, für
> den gilt [mm]r = -x + y[/mm] => in g eingesetzt bedeutet das:
>  [mm]\vec{x}[/mm] = [mm]\vektor{x \\ y \\ z}[/mm] + (-x + y) [mm]\cdot \vektor{1 \\ 0 \\ 0}[/mm]
> = [mm]\vektor{y \\ y \\ z}$[/mm]
>  
> Daher kommt eine fehlerhafte Matrix [mm]P = \pmat{ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1}[/mm]
> heraus, in den Lösungen steht:
> [mm]P = \pmat{ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
>  
> Wie kommt man darauf?
>  


Es muss doch gelten:

[mm]\pmat{y \\ y \\ z}=P\pmat{x \\ y \\ z}[/mm]

Bei Deinem errechneten P ergibt sich:

[mm]\pmat{y \\ y \\ z} \not=\pmat{0 \\ x+y \\ z}[/mm]


> Mal eine allgemeine Frage: Wie kann man auf dem leichtesten
> Weg die Ebene x - y = 0 skizzieren?
>  


Zeichne die WInkelhalbierdende in ein räumliches KS ein.
Und ziehe durch 2 Punke auf der Winkelhalbierenden
Parallelen zu z-Achse.


> Grüße
>  
> Joe


Gruss
MathePower

Bezug
                
Bezug
Abbildungsmatrix bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mo 12.03.2012
Autor: JoeSunnex

Hallo MathePower,
> Es muss doch gelten:
>  
> [mm]\pmat{y \\ y \\ z}=P\pmat{x \\ y \\ z}[/mm]
>  
> Bei Deinem errechneten P ergibt sich:
>  
> [mm]\pmat{y \\ y \\ z} \not=\pmat{0 \\ x+y \\ z}[/mm]

Warum muss das obige gelten, ich dachte in diesem Fall wären die Punkte der Ebene Fixpunkte der Abbildungsmatrix also im Grunde $P [mm] \cdot \pmat{x \\ y \\ z}=\pmat{x \\ y \\ z}$ [/mm]

Deine untere Rechnung kann ich nachvollziehen.

Wie sähe denn der passende Ansatz aus? Stehe irgendwie auf dem Schlauch, wahrscheinlich die Vorfreude aufs Abi nächste Woche :)

> Zeichne die WInkelhalbierdende in ein räumliches KS ein.
>  Und ziehe durch 2 Punke auf der Winkelhalbierenden
>  Parallelen zu z-Achse.

Meinst du mit der Winkelhalbierenden, die Winkelhalbierende der y-z-Ebene = "Verlängerung der x-Achse"?

> Gruss
>  MathePower

Grüße
Joe

Bezug
                        
Bezug
Abbildungsmatrix bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 12.03.2012
Autor: leduart

hallo
x-y=0 ist doch auch y=x, WH in x-y Ebene, z beliebig, darüber und darunter.
2. eine lin Abb findest du am leichtesten, wenn du weisst, wie die 3 vektoren e1=(1,0,0) e2=(0,1,0) und e3=(0,0,1) abgebildet werden, das ergibt die Spalten der Abbildungsmatrix!
wenn in x-richtung projiziert wird, was heisst das für  e1? für e2, für e3
ein allgemeiner punkt  (x,y,z) ist ja x*e1+y*e2+z*e3, deshalb bruchst du nur die bilder der 3 e
(für jeden pkt in der ebene gilt doch y=x
wenn du also die y komponente in der ebene kennst, dann auch die x Komponente.)
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de