www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abbildungsmatrizen bestimmen
Abbildungsmatrizen bestimmen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrizen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:37 Sa 07.01.2006
Autor: SuperTTT

Hallo,

hier bei der 4 habe ich einige Probleme.
[Dateianhang nicht öffentlich]

Die 4a habe ich wie folgt bearbeitet:
[Dateianhang nicht öffentlich]

Im Buch sind die Endergebnisse zu den jeweiligen Aufgaben angegeben. Wundert euch also bitte nicht über den Schluss, ich hatte eine andere Abbildungsmatrix raus als in der Musterlösung, daraufhin habe ich beide mit dem gleichen beliebigen Vektor multipliziert und bekam daraufhin das gleiche Ergebnis, was bedeutet, dass die Abbildungsmatrizen identisch sind. Die Aufgabe ist also richtig, oder?

Allerdings habe ich noch eine Frage dazu:
Ich hatte zu Beginn einige Probleme und einiges ausprobiert, vor allem bei dem Vektor P'.
Woher weiß ich im Voraus, dass, wenn ich den Punkt P =  [mm] \vektor{1 \\ 1 \\ 3} [/mm] wähle, dass P' dann [mm] \vektor{-1 \\ -1 \\ 3} [/mm] und nicht [mm] \vektor{1 \\ 1 \\ -3} [/mm] ist?

Was 4b und 4c betrifft, da weiß ich überhaupt nicht, wie ich das angehen soll. Wäre nett wenn mir hier jemand genau erklären könnte, was ich da machen muss.

Danke im Voraus.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Abbildungsmatrizen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Sa 07.01.2006
Autor: Christian


> Hallo,
>  
> hier bei der 4 habe ich einige Probleme.
>  [Dateianhang nicht öffentlich]
>  
> Die 4a habe ich wie folgt bearbeitet:
>  [Dateianhang nicht öffentlich]
>  
> Im Buch sind die Endergebnisse zu den jeweiligen Aufgaben
> angegeben. Wundert euch also bitte nicht über den Schluss,
> ich hatte eine andere Abbildungsmatrix raus als in der
> Musterlösung, daraufhin habe ich beide mit dem gleichen
> beliebigen Vektor multipliziert und bekam daraufhin das
> gleiche Ergebnis, was bedeutet, dass die Abbildungsmatrizen
> identisch sind. Die Aufgabe ist also richtig, oder?
>  
> Allerdings habe ich noch eine Frage dazu:
>  Ich hatte zu Beginn einige Probleme und einiges
> ausprobiert, vor allem bei dem Vektor P'.
>  Woher weiß ich im Voraus, dass, wenn ich den Punkt P =  
> [mm]\vektor{1 \\ 1 \\ 3}[/mm] wähle, dass P' dann [mm]\vektor{-1 \\ -1 \\ 3}[/mm]
> und nicht [mm]\vektor{1 \\ 1 \\ -3}[/mm] ist?
>  
> Was 4b und 4c betrifft, da weiß ich überhaupt nicht, wie
> ich das angehen soll. Wäre nett wenn mir hier jemand genau
> erklären könnte, was ich da machen muss.
>  
> Danke im Voraus.

Hallo.

Vielleicht habt ihr auch bereits gelernt, daß man die Abbildungsmatrix zu einer linearen Abbildung erhält, indem man die Bilder der Einheitsvektoren als Spalten hinschreibt.
Also sollten wir sehen, was mit denen passiert.
Völlig klar ist das uns nur beim Vektor [mm] $\vektor{0 \\ 0 \\ 1}$, [/mm] da dieser in der Ebene liegt und folglich auf sich selbst abgebildet wird.
Ein weiterer Vektor innerhalb der Ebene ist [mm] $\vektor{1 \\ -1 \\ 0}$. [/mm]
Die 3. Spalte unserer Matrix haben wir also schon.
Für die anderen beiden müssen wir folgende Gleichungen lösen:
[mm] $\vektor{x_1 \\ x_2 \\ x_3}*\vektor{1 \\ 1 \\ 0}=0$ [/mm]
[mm] $\left(\vektor{x_1 \\ x_2 \\ x_3}-\vektor{1 \\ 0 \\ 0}\right)*\vektor{1 \\ -1 \\ 0}=0$ [/mm]
[mm] $\left(\vektor{x_1 \\ x_2 \\ x_3}-\vektor{1 \\ 0 \\ 0}\right)*\vektor{0 \\ 0 \\ 1}=0$ [/mm]
d.h. [mm] $x_1=-x_2$, $(x_1-1)-x_2=0$. $x_3=0$ [/mm]
Was tun wir hier? Wir suchen den Fußpunkt des Lotes von [mm] $\vektor{1 \\ 0 \\ 0}$ [/mm] auf die Ebene.mit diesem können wir dann leicht das Bild von [mm] $\vektor{1 \\ 0 \\ 0}$ [/mm] ausrechnen.
Dieser Fußpunkt ist offenbar
[mm] $\vektor{x_1 \\ x_2 \\ x_3}=\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0}$, [/mm] damit ist das Bild von [mm] $\vektor{1 \\ 0 \\ 0}$: $\vektor{1 \\ 0 \\ 0}+2\left(\vektor{\frac{1}{2} \\ -\frac{1}{2} \\ 0}-\vektor{1 \\ 0 \\ 0}\right)=\vektor{2 \\ -1 \\ 0}$. [/mm]
Ist Dir das soweit klar?
Analog kannst Du das Bild des 2. Einheitsvektors bestimmen und erhältst so die Darstellungsmatrix.
Für die anderen beiden Aufgaben ist die Methode prinzipiell die gleiche, nur daß die Bilder der Einheitsvektoren sehr viel einfacher zu berechnen sind, was einfach aus der Anschauung folgt.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de