Abelsche Gruppe, Q-Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:39 Di 04.11.2014 | Autor: | Akrone |
Aufgabe | Für eine vorgegebene abelsche Gruppe (V;+) gibt es höchstens eine Abbildung [mm] \IQ [/mm] x V [mm] \to [/mm] V derart, dass sie mit dieser Abbildung als Multiplikation mit Skalaren ein [mm] \IQ [/mm] -Vektorraum wird. |
Hallo,
ich muss diese Aufgabe für LA I bearbeiten, aber mir fehlt irgentwie die Idee, wie ich anfangen muss/kann.
Mit freundlichen Grüßen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Ich habe leider keine einfachere Idee gefunden. Man kann folgendermaßen argumentieren: Wenn $ V $ ein Vektorraum ist, so ist für jedes $ [mm] q\in\IQ [/mm] $ ist die Abbildung $ [mm] v\longmapsto [/mm] qv$ ein Endomorphismus von $ V $, welchen ich mit $ [mm] h_q [/mm] $ notiere.
Ferner gilt für die Zuordnung [mm] $\IQ\xrightarrow [/mm] {\ \ f\ \ [mm] }\operatorname [/mm] {End} V $, [mm] $q\longmapsto h_q [/mm] $ dass $ f (x*y)=f [mm] (x)\circ [/mm] f (y) $.
Es genügt, zu zeigen, dass eine Abbildung mit dieser Eigenschaft durch ihre Werte auf [mm] $\IZ [/mm] $ bereits eindeutig bestimmt ist. (Weshalb genügt das?)
Sei $ g $ dafür ebenso. Dann folgt
$ f (x/y)=f (1/y*x)= f (1/y) f (x)=f (1/y)g (y*x*1/y)=f (1/y)*g (x*y)*g (1/y)$. Per Symmetrie folgt $ f (x/y)=g (x/y) $.
Was wir hier eigentlich gezeigt haben, ist der Satz, dass zwei multiplikative Halbgruppenhomomorphismen [mm] $\IQ\longrightarrow [/mm] H $ bereits übereinstimmen, wenn sie das auf [mm] $\IZ [/mm] $ tun, und diese Aussage ist sehr überraschend und hat erstaunliche kategorientheoretische Verallgemeinerungen, deshalb frage ich mich, ob es einfacher geht.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Was man machen kann ist die Beweisidee etwas einfacher zu verpacken.
Man nimmt an, es gäbe zwei Abbidlungen . und *.
Dann zeigt man n.v=n*v für alle $n [mm] \in \mathbb [/mm] N$ und damit dann auch gleich für alle $n [mm] \in \mathbb [/mm] Z$.
Damit kann man dann auch [mm] $\frac{p}{q}.v=\frac{p}{q}*v$ [/mm] zeigen.
|
|
|
|