www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Abgeschlossenheit Teilmenge
Abgeschlossenheit Teilmenge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit Teilmenge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:29 Mi 28.05.2008
Autor: fabson

Aufgabe
Im metrischen Raum [mm] \IR^2 [/mm] mit der euklidischen Metrik untersuche man, ob die Teilmenge X = [mm] \{ (x,\frac{1}{x}cosx) | x \in \IR^{*}_{+} \} [/mm] abgeschlossen ist.
Ist [mm] X\cup(\{0\}\times\IR) [/mm] abgeschlossen?

Eine teilmenge ist ja abgeschlossen, wenn fuer alle folgen, deren glieder in der Teilmenge liegen, der Grenzwert auch in der Teilmenge liegt.

Da ich denke, dass die Menge nicht abgeschlossen ist, habe ich versucht mir eine Folge zu konstruieren, die in X liegt aber nicht deren Grenzwert, nähmlich:

[mm] x_{n} [/mm] := [mm] (\frac{1}{n}, ncos(\frac{1}{n})) [/mm]

diese folge muesste ja in X liegen und für den Grenzwert gilt:

lim [mm] x_n [/mm] = x = (0, unendlich)

Kann ich jetzt einfach sagen, dass x nicht in X liegt, obwohl die zweite komponoente des Grenzwertes unendlich ist.

Und wie sieht dass bei X vereinigt [mm] (\{0\}\times\IR) [/mm] aus? unendlich liegt ja auch nicht in R und dann muesste ja auch diese Menge nicht abgeschlossen sein?

Vielen Dank schonmal im voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abgeschlossenheit Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 28.05.2008
Autor: Somebody


> Im metrischen Raum [mm]\IR^2[/mm] mit der euklidischen Metrik
> untersuche man, ob die Teilmenge X = [mm]\{ (x,\frac{1}{x}cosx) | x \in \IR^{*}_{+} \}[/mm]
> abgeschlossen ist.
>  Ist [mm]X\cup(\{0\}\times\IR)[/mm] abgeschlossen?
>  Eine teilmenge ist ja abgeschlossen, wenn fuer alle
> folgen, deren glieder in der Teilmenge liegen, der
> Grenzwert auch in der Teilmenge liegt.
>  
> Da ich denke, dass die Menge nicht abgeschlossen ist, habe
> ich versucht mir eine Folge zu konstruieren, die in X liegt
> aber nicht deren Grenzwert,

Die Grundidee ist richtig. Der Nachweis einer solchen Folge wird aber nur möglich sein, falls $X$ tatsächlich nicht abgeschlossen ist...

> nähmlich:
>  
> [mm]x_{n}[/mm] := [mm](\frac{1}{n}, ncos(\frac{1}{n}))[/mm]
>  
> diese folge muesste ja in X liegen und für den Grenzwert
> gilt:
>  
> lim [mm]x_n[/mm] = x = (0, unendlich)
>  
> Kann ich jetzt einfach sagen, dass x nicht in X liegt,
> obwohl die zweite komponoente des Grenzwertes unendlich
> ist.

Nein. Denn um zu zeigen, dass $X$ nicht abgeschlossen ist, müsstest Du eine Folge von Elementen aus $X$ angeben können, deren Limes in [mm] $\IR^2\backslash [/mm] X$ liegt. Aber der "Limes" [mm] $(0,\infty)$ [/mm] Deiner Folge existiert in [mm] $\IR^2$ [/mm] gar nicht, liegt also insbesondere nicht in [mm] $\IR^2\backslash [/mm] X$.
Ich, an Deiner Stelle, würde angesichts einer solchen Situation die Möglichkeit, dass $X$ tatsächlich abgeschlossen sein könnte, nicht ganz ausschliessen wollen.

Wäre dies der Fall, so würde aus der Abgeschlossenheit von $X$ und der Abgeschlossenheit von [mm] $\{0\}\times \IR$ [/mm] auch die Abgeschlossenheit ihrer Vereinigungsmenge folgen: denn die Vereinigung endlich vieler abgeschlossener Mengen ist (bekanntlich) abgeschlossen.

Bezug
                
Bezug
Abgeschlossenheit Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 28.05.2008
Autor: fabson

Ok, dann versuch ich mal abgeschlossenheit zu zeigen:

Ich nehme als eine Folge in [mm] x_n [/mm] := [mm] (a_n, b_n) [/mm] in X mit lim [mm] x_n [/mm] = (a,b). Dann muesste ja gelten

[mm] b_n [/mm] = [mm] \frac{1}{a_n}cosa_n [/mm]

und

[mm] a_n \in \IR_{+}-\{0\} [/mm]

? und daraus wuerde dann ja folgen

b = [mm] limb_n [/mm] = [mm] lim(\frac{1}{n}cosa_n) [/mm] = [mm] \frac{1}{lima_n}cos(lima_n) [/mm] = [mm] \frac{1}{a}cosa. [/mm] Und daraus dann, (a,b) [mm] \in [/mm] X?

Bezug
                        
Bezug
Abgeschlossenheit Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Do 29.05.2008
Autor: Somebody


> Ok, dann versuch ich mal abgeschlossenheit zu zeigen:
>  
> Ich nehme als eine Folge in [mm]x_n[/mm] := [mm](a_n, b_n)[/mm] in X mit lim
> [mm]x_n[/mm] = (a,b). Dann muesste ja gelten
>  
> [mm]b_n[/mm] = [mm]\frac{1}{a_n}cosa_n[/mm]
>  
> und
>  
> [mm]a_n \in \IR_{+}-\{0\}[/mm]
>  
> ? und daraus

Du darfst annehmen, dass [mm] $(a,b)\in\IR^2$ [/mm] ist. Insbesondere ist [mm] $b\in \IR$ [/mm] (der Fall [mm] $b=+\infty$ [/mm] ist ausgeschlossen). Deshalb ist es auch nicht möglich, eine Folge von Elementen [mm] $(a_n,b_n)$ [/mm] aus $X$ zu finden, derart dass der Limes [mm] $(a,b)=\lim_{n\rightarrow \infty} (a_n,b_n)$ [/mm] die erste Koordinate $a=0$ hat: für den Limes jeder konvergenten Folge von Elementen aus $X$ muss der Limes der ersten Koordinate $a>0$ sein. In diesem Falle kannst Du aber den Limes $b$ der zweiten Koordinaten [mm] $b_n$ [/mm] angeben: [mm] $b=\lim_{n\rightarrow \infty} \frac{1}{a_n}\cos(a_n)=\frac{1}{a}\cos(a)$. [/mm] Nun ist aber offensichtlich [mm] $(a,b)=(a,\frac{1}{a}\cos(a))\in [/mm] X$, was zu zeigen war.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de