www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableiten
Ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:20 Mi 28.04.2010
Autor: Ice-Man

Habe hier mal was abgeleitet (zumindest versucht ;))

[mm] y=e^{x}*cosx [/mm]
[mm] y'=e^{x}(cosx-sinx) [/mm]
[mm] y''=e^{x}(-sinx-sinx) [/mm]
[mm] y'''=-2e^{x}(sinx-cosx) [/mm]

Stimmt das, oder habe ich was richtig falsch gemacht?? ;)

        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Mi 28.04.2010
Autor: ChopSuey

Hallo,

die dritte Ableitung müsste lauten $\ [mm] f(x)'''=-2e^{x}(sinx+cosx) [/mm] $

ChopSuey

Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Mi 28.04.2010
Autor: Ice-Man

Dann schaue ich also nochmal nach ;)
Aber der "Rest" ist ok??

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Mi 28.04.2010
Autor: steppenhahn

Hallo,

> Dann schaue ich also nochmal nach ;)
>  Aber der "Rest" ist ok??

Ja, erste und zweite Ableitung stimmen. [ok]

Grüße,
Stefan

Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:57 Mi 28.04.2010
Autor: Ice-Man

Wenn ich jetzt zu der Funktion nen Taylorpolynom 3.Grades angeben soll.
Könnt ich das so machen?

[mm] Taylor=1+\bruch{1}{1!}(x)+\bruch{0}{2!}(x)^{2}+\bruch{2}{3!}(x)^{3} [/mm]
[mm] Taylor=-\bruch{1}{3}x^{3}+x+1 [/mm]

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Mi 28.04.2010
Autor: Ultio


> Wenn ich jetzt zu der Funktion nen Taylorpolynom 3.Grades
> angeben soll.
>  Könnt ich das so machen?
>  
> [mm]Taylor=1+\bruch{1}{1!}(x)+\bruch{0}{2!}(x)^{2}+\bruch{2}{3!}(x)^{3}[/mm]
>  [mm]Taylor=-\bruch{1}{3}x^{3}+x+1[/mm]  


T(f,a) = f(x) + 1/2 f'(a) (x-a) + 1/6 f''(a) [mm] (x-a)^2 [/mm] + 1/24 f'''(a) [mm] (x-a)^3 [/mm]
würde das ersteinmal lauten, dann einfach Entwicklungspunkt a einsetzen und dann ausrechnen/ausmultiplizieren und auf vernünftige Darstellung bringen.

Gebe uns das mal an und dann mache ein paar mehr schritte damit wir das schneller nachvollziehen können was du da tust und ggf. vielleicht einen Fehler finden bzw. schnell sagen können ob es richtig ist.
Gruß

Bezug
                        
Bezug
Ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Mi 28.04.2010
Autor: Ice-Man

Hatt ich vergessen...
Ich hatte als "Punkt"
[mm] x_{0}=0 [/mm] genommen, bzw. er wurde angegeben.

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Mi 28.04.2010
Autor: fred97


> Wenn ich jetzt zu der Funktion nen Taylorpolynom 3.Grades
> angeben soll.
>  Könnt ich das so machen?
>  
> [mm]Taylor=1+\bruch{1}{1!}(x)+\bruch{0}{2!}(x)^{2}+\bruch{2}{3!}(x)^{3}[/mm]

Ersetze das letzte "+" durch ein "-":

[mm]Taylor=1+\bruch{1}{1!}(x)+\bruch{0}{2!}(x)^{2}-\bruch{2}{3!}(x)^{3}[/mm]





>  [mm]Taylor=-\bruch{1}{3}x^{3}+x+1[/mm]  


Jetzt stimmts wieder.

Statt "Taylor=" verwnde doch bitte die Bez. des Taylorplynoms, welche Ihr in der Vorlesung hattet.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de