www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableiten einer Funktion
Ableiten einer Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 11.02.2007
Autor: Jana1972

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Aufgabe ist: Finden Sie f'(x) zu folgender Funktion:
[mm] f(x)=2/2+x^2 [/mm]

Lösungsansatz:

die Quotientenregel liefert:
f'(x)= [mm] 0(2+x^2)-4x/(2+x^2)^2 [/mm]

Ich bin jedoch nicht sicher, ob die Aufgabe mittels der Quotientenregel zu lösen ist, da im Zähler kein "x" steht.

        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 So 11.02.2007
Autor: antjeb.

hallo
Sind 2/2 nicht 1?

heisst die funktionsgleichung dann nicht
f(x) = 1 + x² und die ableitung f(x) = 2x??
oder stehe ich gerade völlig auf dem schlauch?

MfG
Antje

Bezug
                
Bezug
Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 So 11.02.2007
Autor: Jana1972

Hallo Antje,

daran hatte ich auch gedacht, nur steht unter dem Bruchstrich eine Summe, so dass man nicht ohne Weiteres kürzen kann.
Hast Du eine andere Idee?

Bezug
                        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 So 11.02.2007
Autor: XPatrickX

Hallo
Ich denke es geht um folgende Funktion:

[mm] f(x)=\bruch{2}{2+x^2} [/mm] und daher kann man die Funktion auch NICHT zu [mm] 1+x^2 [/mm] vereinfachen.

Natrülich kannst du hier die Quotientenregel benutzen. Die von dir genannte Ableitung ist auch richtig, wenn man sie ordentlich zusammenfasst sollte es dann so aussehen:
[mm] f'(x)=\bruch{-4x}{{(2+x^2)}^{2}} [/mm]


Einfach gehts allerdings wenn du die Funktion so umschreibst:
[mm] f(x)=2*{(2+x^2)}^{-1} [/mm]
Dann kannst du Mithilfe der normalen Potenzregel und der Kettenregel (innere Ableitung nicht vergessen!) die Funktion ableiten und solltest auf das geliche Ergebnis kommen.


P.S.: Am besten ist wenn du in Zukunft den Formeleditor benutzt oder wenigstens mehr klammern setzt, denn [mm] \bruch{2}{2+x^2} \not= 2/2+x^2 [/mm]

Gruß Patrick


Bezug
                                
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 So 11.02.2007
Autor: antjeb.

Hallo
Da muss ich Patrick zustimmen zwecks Klammern, da es aufgrund dessen leicht zu missverständnissen kommen kann.
So ist es natürlich korrekt
MfG
Antje

Bezug
                                
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 So 11.02.2007
Autor: Jana1972

Hallo Patrick,

vielen tausend Dank für Deine Antwort und den Tipp! :-)
Herzliche Grüße und Dir einen phantastischen Sonntag!

Jana



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de