www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableiten mit Quotientenregel
Ableiten mit Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten mit Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Sa 15.11.2008
Autor: Elisabeth17

Aufgabe
Ableitung mit Quotientenregel:
a)  k(a)= [mm] a^{-(2+p)} [/mm]

Ableitung mit Kettenregel:
b)  f(x)= [mm] \wurzel{3x} [/mm]


Hallo MatheForum!

Ich hab Schwierigkeiten beim Ableiten dieser beiden Funktionen.
Denn meine Ableitung stimmt nicht mit der auf dem Lösungsblatt überein.

KAnn mir jemand helfen und meine Fehler entlarven?

Ich leg dann also mal los:

Die Ableitung bei a) muss mithilfe der Quotientenregel errechnet werden.
Die Quotientenregel besagt, dass bei f(x)= [mm] \bruch{u(x)}{v(x)} [/mm] gilt:
f'(x)= [mm] \bruch{u'(x)*v(x)-u(x)*v'(x)}{v^{2}v(x)} [/mm]

Also:
[mm] k(a)=\bruch{1}{a^{2+p}} [/mm] = [mm] \bruch{1}{a^{2}*a^{p}} [/mm]

u(a)= 1    
u‘(a)= 0
v(a)= [mm] a^{2}*a^{p} [/mm]
v'(a)= [mm] 2a*p*a^{p-1} [/mm]

k'(a)= [mm] \bruch{0-2a*p*a*^{p-1}}{a^{4}*a^{2p}} [/mm] = [mm] -\bruch{2a*p*a^{p}*a^{-1}}{a^{4}*a^{2p}} [/mm]
gekürzt: [mm] -\bruch{2p}{a^{4}*a^{p}} [/mm]

Und das ist falsch! Die richtige Kösung ist: [mm] -(2+p)a^{-(3+p)} [/mm]
Was hab ich falsch gemacht?

Bei Aufgabe b) weiß ich auch nicht, was ich falsch mache.
Hier soll die Kettenregel angewendet werden.

Die Kettenregel besagt, dass bei f(x)= u(v(x)) gilt:
f'(x)= u'(v(x))*v'(x)

Also:
f(x)=  [mm] \wurzel{3x} [/mm]

f'(x)= [mm] \bruch{1}{2*\wurzel{3x}}*3 [/mm] = [mm] \bruch{3}{2*\wurzel{3x}} [/mm]

In der Lösung steht jedoch: [mm] \wurzel{\bruch{3}{4x}} [/mm]
Und da weiß ich wirklich nicht, wie ich darauf kommen soll?!

Es wäre schön, wenn jemand Klarheit in die Sache bringen könnte ...

LG Eli



        
Bezug
Ableiten mit Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Sa 15.11.2008
Autor: mareike-f

Hi,
kommen wir mal zur Quotientenregel.
Schau dir hier nochmal dein v(a) an. Ich würd das hier nicht auseinanderziehen, sondern gesamt betrachten.
Du leitest ja nach a ab, also musst das p wie eine normale Zahl betrachten.
Also hast du dort stehen a hoch irgendeiner Zahl und die Regel kennst du ja:
    [mm](a^n)' = n a^{n-1}[/mm]
Also erhälst du dann ja für v'
[mm]v'(a)=(2+p)*a^{(2+p)-1} [/mm]
...
ich denk damit kannst du das nochmal probieren.
Ich hätte das im übrigen nicht mit der Quotientenregel gemacht sondern direkt abgeleitet:
[mm]k(a)=a^{-2-p}[/mm]
[mm]k'(a)=(-2-p)*a^{-3-p}[/mm]
[mm]=-(2+p)*a^{-(3+p)}[/mm]

Bei deiner Kettenregel ist deine Lösung schon richtig, wenn du auf die Musterlösung kommen willst musst du das ganze nur noch ein wenig umformen. Wenn du das so nicht kannst, versuch mal dein Ergebnis zu quadrieren und dann wieder die Wurzel zu ziehen.

LG. Mareike

Bezug
                
Bezug
Ableiten mit Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Sa 15.11.2008
Autor: Elisabeth17

Hallo,

vielen Dank für die Hilfe!
Ich bin gar nicht auf den Gedanken gekommen, die Hochzahl nicht auseinander zu ziehen. Mit dem von dir vorgeschlagenen Weg, komme ich auf die richtige Lösung! Danke!
(Natürlich wär's mit der direkten Ableitung noch einfacher gewesen, aber wir sollen die Quotientenregel üben).

Danke auch für den Tipp bei b) zu Quadrieren!

LG Eli






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de