www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableiten und Extremwert
Ableiten und Extremwert < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten und Extremwert: Kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 23:05 Sa 15.04.2006
Autor: binoy83

Aufgabe
[mm] \bruch{2y^2}{\wurzel {y^2-9}} [/mm] =

Hallo,
leider komme ich nicht auf die Ableitung die erste und dann auch natürlich die Zweite. Ich weiß auch nicht wie ich dann nach null auflöse die erste Ableitung, damit ich die Extremwerte raus bekomme. Beides ist leider sehr schwer und ich mühe mich schon die ganze Zeit ab. ;)
Leider habe ich das mit der Wurzel in der Aufgabenstellung nicht hinbekommen. Natürlich steht alles unter dem Bruch also [mm] y^2-9 [/mm] unter der Wurzel.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableiten und Extremwert: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 23:42 Sa 15.04.2006
Autor: Loddar

Hallo binoy!


Hier ist die MBQuotientenregel erforderlich:

$f'(y) \ = \ [mm] \bruch{4y*\wurzel{y^2-9}-2y^2*\bruch{2y}{2*\wurzel{y^2-9}}}{y^2-9}$ [/mm]

Nun  musst Du hier noch etwas zusammenfassen und alles auf einen Bruchstrich schreiben ...


Gruß
Loddar


Bezug
                
Bezug
Ableiten und Extremwert: Nach Y auflösen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:10 So 16.04.2006
Autor: binoy83

Aufgabe
-

Hi,
danke!!! Den Rechenweg kann ich bis dahin auch verstehen. Nur komme ich trotz vereinfachung und etc. nicht auf die Lösung y= -2*wurzel3 bzw. -2 wurzel-3 und y= 1.
Ich schaffe es einfach nicht durch auflösung nach y von der ersten ableitung auf das ergebnis zu kommen.

Bezug
                        
Bezug
Ableiten und Extremwert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 So 16.04.2006
Autor: Disap


>  Hi,
>  danke!!! Den Rechenweg kann ich bis dahin auch verstehen.
> Nur komme ich trotz vereinfachung und etc. nicht auf die
> Lösung y= -2*wurzel3 bzw. -2 wurzel-3 und y= 1.
>  Ich schaffe es einfach nicht durch auflösung nach y von
> der ersten ableitung auf das ergebnis zu kommen.  

Hallo, wie wärs denn, wenn du dir die Mühe gemacht hättest, deinen Rechenweg einmal zu zeigen?
Und was sind das da überhaupt für Lösungen? Ich bekomme
[mm] y_{1,2}=-3\wurzel{2} [/mm] heraus und [mm] y_3=0 [/mm]

$ f'(y) \ = \ [mm] \bruch{4y\cdot{}\wurzel{y^2-9}-2y^2\cdot{}\bruch{2y}{2\cdot{}\wurzel{y^2-9}}}{y^2-9} [/mm] $

Als Vereinfachung bekomme ich

[mm] \br{\br{4*y^3 - 72*y}{2*\wurzel{y^2 - 9}}}{y^2 - 9} [/mm]

Wodurch man nur noch

[mm] 4*y^3 [/mm] - 72*y = 0 untersuchen muss

und da erhalte ich die obengenannten Lösungen. Da du deinen Rechenweg nicht gepostet hast, kann ich dir nun leider nicht sagen, ob du dich verrechnet hast oder ich mich, was ich leider nicht ausschließen kann.

Viele Grüße
Disap



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de