Ableiten und Tangente < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:06 Mo 06.12.2004 | Autor: | deppo |
Hiho @all,
ich habe folgende Probleme, habe zwar für alle Aufgaben die Lösungen, kann aber entweder den Lösungsweg nicht erstellen bzw. brauche Tipps fürs Lösen.
1.
Leite die Funktion ab:
1.1 f(x)=(2-3x)²(1-x) Lösung: -27x²+42x-16
Meine Lösung: f'(x)=-4+24x-27x² (zuerst bin. Formel gelöst und dann ausmultipliziert)
1.2 f(x)=(2+ [mm] \bruch{1}{3}x²) \bruch{5-2x}{3}
[/mm]
Lösung: f'(x)=-2/3 x²+10/9 x-4/3
Meine Lösung: 4/3+10x-6x² Auch hier wie bei 1.1, was mache ich falsch oder könntet ihr plz euren Rechenweg angeben.
1.3 k(t)=t-5 [mm] \wurzel{t}/2 \wurzel{t} [/mm] Lösung:k'(t)=1/4 [mm] \wurzel{t}
[/mm]
Hier weiß ich überhaupt nicht, wie ich vorgehen muss.
2. Ermittle die Ableitung der Funktion f mit Hilfe des Differenzenquotienten:
f(x)=1/x² Lösung:-2/x³
Lösungsweg bisher: In Differenzenquotient eingesetzt:
[mm] \bruch{1/x²-1/xo²}{x-xo} [/mm] dann 1/x² x 1/x - -1/xo² x 1/xo
Die x³ kann ich ja noch nachvollziehen, nur woher kommen die -2?
3. Ermittle die Gleichung der Tangente im Punkt P(xo|f(xo)) an das Schaubild.
[mm] f(x)=x³-\bruch{1}{2}x²; [/mm] xo=-1 Lösung: P(-1|-3/2) f'(-1) = 4 t: y=4x + 5/2
Ich habe f(x) in f'(x) umgestellt:
f'(x)=3x²-(-x) und dann xo für x eingesetzt f'(x)=4
Aber wie komm ich nun auf den Punkt P (vor allem die 3/2) und die Tangentengleichung mit 5/2?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:37 Mo 06.12.2004 | Autor: | Sigrid |
Hallo Deppo,
> Hiho @all,
> ich habe folgende Probleme, habe zwar für alle Aufgaben die
> Lösungen, kann aber entweder den Lösungsweg nicht erstellen
> bzw. brauche Tipps fürs Lösen.
>
> 1.
> Leite die Funktion ab:
> 1.1 f(x)=(2-3x)²(1-x) Lösung: -27x²+42x-16
> Meine Lösung: f'(x)=-4+24x-27x² (zuerst bin. Formel gelöst
> und dann ausmultipliziert)
Dein Verfahren ist richtig. Du musst dich also verrechnet haben. Schade, dass du die Rechnung nicht mitgeliefert hast, dann könnte ich direkt den Fehler angeben. So gebe ich dir einen Zwischenschritt:
f(x) = [mm] (4-12x+9x^2)(1-x) [/mm] = [mm] -9x^3+21x^2-16x.
[/mm]
Daraus ergibt sich dann die Ableitung.
> 1.2 f(x)=(2+ [mm]\bruch{1}{3}x²) \bruch{5-2x}{3}
[/mm]
> Lösung:
> f'(x)=-2/3 x²+10/9 x-4/3
> Meine Lösung: 4/3+10x-6x² Auch hier wie bei 1.1, was mache
> ich falsch oder könntet ihr plz euren Rechenweg angeben.
Auch hier hast du offensichtlich einen Rechenfehler. Überprüfe noch einmal deine Rechnung. Falls du nicht zum richtigen Ergebnis kommst, gib uns doch bitte deine Rechenschritte an.
> 1.3 k(t)=t-5 [mm]\wurzel{t}/2 \wurzel{t}[/mm] Lösung:k'(t)=1/4
> [mm]\wurzel{t}
[/mm]
> Hier weiß ich überhaupt nicht, wie ich vorgehen muss.
>
Mir ist leider nicht klar, wie die Funktion genau aussieht. Schreibe doch bitte, die ganze Funktion mit dem Formeleditor.
> 2. Ermittle die Ableitung der Funktion f mit Hilfe des
> Differenzenquotienten:
> f(x)=1/x² Lösung:-2/x³
> Lösungsweg bisher: In Differenzenquotient eingesetzt:
> [mm]\bruch{1/x²-1/xo²}{x-xo}[/mm] dann 1/x² x 1/x - -1/xo² x 1/xo
> Die x³ kann ich ja noch nachvollziehen, nur woher kommen
> die -2?
>
Auch hier kann ich deine Schritte nicht ganz nachvollziehen, deshalb die weitere Rechnung
[mm]\bruch{1/x²-1/xo²}{x-xo}[/mm] (den Hauptbruch mit [mm] x^2 \cdot x_0^2 [/mm] erweitern)
= [mm]\bruch{x_0²-x²}{(x-xo) x^2 x_0^2}[/mm]
= [mm]\bruch{(x_0-x)(x_0+x)}{(x-xo) x^2 x_0^2}[/mm]
Jetzt kannst du durch [mm] x-x_0 [/mm] kürzen und erhälst
[mm]\bruch{-(x_0+x)}{ x^2 x_0^2}[/mm]
Der Grenzwert ist jetzt deine Ableitung.
> 3. Ermittle die Gleichung der Tangente im Punkt P(xo|f(xo))
> an das Schaubild.
> [mm]f(x)=x³-\bruch{1}{2}x²;[/mm] xo=-1 Lösung: P(-1|-3/2) f'(-1) =
> 4 t: y=4x + 5/2
> Ich habe f(x) in f'(x) umgestellt:
> f'(x)=3x²-(-x) und dann xo für x eingesetzt f'(x)=4
Hier stimmt was nicht. Die Ableitung ist f'(x)=3x²-x ,
> Aber wie komm ich nun auf den Punkt P (vor allem die 3/2)
Es gilt f(-1) = -3/2 (Du setzt -1 in die Funktionsgleichung ein.)
> und die Tangentengleichung mit 5/2?
Du hast sicher gelernt, wie man die Gleichung einer Geraden aufstellt, wenn man einen Punkt (hier P( und die Steigung kennt,
>
Gruss Sigrid
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:20 Mo 06.12.2004 | Autor: | deppo |
Thx für die Antworten.
"1.3 k(t)=t-5 $ [mm] \wurzel{t}/2 \wurzel{t} [/mm] $ Lösung:k'(t)=1/4 $ [mm] \wurzel{t} [/mm] $
Hier weiß ich überhaupt nicht, wie ich vorgehen muss. "
Hier die Funktion nochmal:
k(t)= [mm] \bruch{t-5 \wurzel{t}}{2 \wurzel{t}}
[/mm]
Lösung:k'(t)= [mm] \bruch{1}{4 \wurzel{t}}
[/mm]
|
|
|
|
|
Halli hallo!
> Hier die Funktion nochmal:
> k(t)= [mm]\bruch{t-5 \wurzel{t}}{2 \wurzel{t}}
[/mm]
>
>
> Lösung:k'(t)= [mm]\bruch{1}{4 \wurzel{t}}[/mm]
Also als erstes kannst du folgende Umformung machen:
[mm] k(t)=\bruch{t-5 \wurzel{t}}{2 \wurzel{t}}=\bruch{t}{2*\wurzel{t}}-\bruch{5*\wurzel{t}}{2*\wurzel{t}}=\bruch{1}{2}*\wurzel{t}-\bruch{5}{2}
[/mm]
Daraus folgt nun:
[mm] k'(t)=(\bruch{1}{2}*t^{\bruch{1}{2}}-\bruch{5}{2})'=\bruch{1}{2}*\bruch{1}{2}*t^{-\bruch{1}{2}}=\bruch{1}{4*\wurzel{t}}
[/mm]
Ich hoffe ich konnte dir weiterhelfen!
Wenn du noch Fragen hast melde dich einfach nochmal!
Liebe Grüße
Ulrike
|
|
|
|