www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 01.03.2006
Autor: G3kkoo

Hallo nochmal..

y= [mm] \bruch{ln x}{ \wurzel{x}} [/mm] ,  y'= ?   (via Quotientenregel)

[mm] u'=\bruch{1}{x} [/mm]  v'= [mm] \bruch{1}{2 \wurzel{x}} [/mm]

.. habe dann die erste Ableitung erstellt:

y'= [mm] \bruch{\bruch{1}{x}*\wurzel{x} - \bruch{1}{2 \wurzel{x}} * ln x}{\wurzel{x}^{2}} [/mm]

der nächste Schritt ist mir unklar, denn es soll dann so aussehen:

= [mm] \bruch{\bruch{1}{\wurzel{x}} - \bruch{1}{2 \wurzel{x}} * ln x}{x} [/mm]

Kann man denn [mm] \wurzel{x} [/mm] im Zähler mit [mm] \wurzel{x} [/mm] in Nenner kürzen? Warum bleibt dann im Nenner x zurück?

Vielen dank im Voraus





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitung: Potenzrechnung
Status: (Antwort) fertig Status 
Datum: 15:52 Mi 01.03.2006
Autor: Roadrunner

Hallo G3kkoo,

[willkommenmr] !!


Im Zähler eliminieren sich bzw. heben sich die Wurzel und das Quadrat gegenseitig auf:

[mm] $\left( \ \wurzel{x} \ \right)^2 [/mm] \ = \ x$


Und im Zähler wird beim ersten Term umgeformt:

[mm] $\bruch{\wurzel{x}}{x} [/mm] \ = \ [mm] \bruch{\wurzel{x}}{\left( \ \wurzel{x} \ \right)^2} [/mm] \ = \ [mm] \bruch{1}{\wurzel{x}}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mi 01.03.2006
Autor: G3kkoo

Hallo und danke für die nette Begrüßung!

Als das Wuzel und Quadrat sich aufheben hätte mir auch auffallen müssen, wie peinlich..

Gut, dann haben wir oben [mm] \bruch{1}{x} [/mm] * [mm] \wurzel{x} [/mm]  ,

wie wird es zu [mm] \bruch{1}{\wurzel{x}} [/mm] ?

Ich kann deiner unteren Formel grad nicht folgen :(

sorry.. ich steh unter Denkstress :S



Bezug
                        
Bezug
Ableitung: Umformung
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 01.03.2006
Autor: Roadrunner

Hallo G3kkoo!


Im Nenner des Bruches [mm] $\bruch{\wurzel{x}}{x}$ [/mm] ersetze ich das $x_$ durch [mm] $\left( \ \wurzel{x} \ \right)^2$ [/mm] (siehe obige Antwort) und erhalte dadurch einen Ausdruck gemäß:

[mm] $\bruch{\wurzel{x}}{\left( \ \wurzel{x} \ \right)^2} [/mm] \ = \ [mm] \bruch{a}{a^2}$ [/mm]

Und nun kann ich ein $a_$ kürzen ...


Gruß vom
Roadrunner


PS:

Du kannst dem Ausdruck [mm] $\bruch{\wurzel{x}}{x}$ [/mm] auch mit MBPotenzgesetzen zu Leibe rücken:

[mm] $\bruch{\wurzel{x}}{x} [/mm] \ = \ [mm] \bruch{x^{\bruch{1}{2}}}{x} [/mm] \ = \ [mm] x^{\bruch{1}{2}} [/mm] : [mm] x^1 [/mm] \ = \ [mm] x^{\bruch{1}{2}-1} [/mm]  \ = \ [mm] x^{-\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{x^{\bruch{1}{2}}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{x}}$ [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de