www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 14.02.2007
Autor: weltio

Aufgabe
Gib f'(x) an.
[mm] f(x)=3\wurzel{x}-x^{4} [/mm]

Hallo,

die Frage lautet wie die Ableitung von [mm] 3\wurzel{x} [/mm] ist.
Die Definition ist ja [mm] n*x^{n-1}. [/mm] Demnach müsste das aber
[mm] x^{-\bruch{1}{3}}. [/mm]

Oder mache ich was falsch? :D

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mi 14.02.2007
Autor: Yuma

Hallo Weltio,

> Gib $f'(x)$ an: [mm]f(x)=3\wurzel{x}-x^{4}[/mm].

> Die Frage lautet, wie die Ableitung von [mm]3\wurzel{x}[/mm] ist.
> Die Definition ist ja [mm]n*x^{n-1}[/mm].

Wenn [mm] $f(x)=x^n$ [/mm] ist, dann ist [mm] $f'(x)=n\cdot x^{n-1}$, [/mm] richtig! [ok]
Das ist aber keine Definition, sondern ein Satz! ;-)

> Demnach müsste das aber [mm]x^{-\bruch{1}{3}}[/mm].
> Oder mache ich was falsch? :D

Prinzipiell nicht, aber [mm] $\sqrt{x}=x^{\frac{1}{2}}$ [/mm]
- die Formel kannst (und solltest) du hier schon verwenden!

MFG,
Yuma

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 14.02.2007
Autor: weltio


> Wenn [mm]f(x)=x^n[/mm] ist, dann ist [mm]f'(x)=n\cdot x^{n-1}[/mm], richtig!
> [ok]
>  Das ist aber keine Definition, sondern ein Satz! ;-)

Entschuldige bitte... :(

> Prinzipiell nicht, aber [mm]\sqrt{x}=x^{\frac{1}{2}}[/mm]
> - die Formel kannst (und solltest) du hier schon
> verwenden!

In der Lösung steht, dass die Antwort:

[mm] \bruch{1}{2x²} [/mm]
sei...
Aber wie kommt man denn darauf?


und wieso ist die Ableitung von [mm] \bruch{1}{2x²} [/mm] gleich [mm] -\bruch{1}{x³}??? [/mm]

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 14.02.2007
Autor: Yuma

Hallo Weltio,

>  >  Das ist aber keine Definition, sondern ein Satz! ;-)
>  
> Entschuldige bitte... :(

Ich weiß, das kommt dir unheimlich spitzfindig vor -
es ist aber nicht ganz unwichtig, präzise zu formulieren... :-)
  

>  In der Lösung steht, dass die Antwort: [mm]\bruch{1}{2x²}[/mm] sei...
>  Aber wie kommt man denn darauf?

Nein, das stimmt nicht... vielleicht ist eine andere Funktion gemeint?!

Die Ableitung der Funktion [mm] $f(x)=\sqrt{x}=x^{\frac{1}{2}}$ [/mm] ist
[mm] $f'(x)=\frac{1}{2}\cdot x^{-\frac{1}{2}}=\frac{1}{2\cdot x^{\frac{1}{2}}}=\frac{1}{2\sqrt{x}}$. [/mm]

> und wieso ist die Ableitung von [mm]\bruch{1}{2x²}[/mm] gleich [mm]-\bruch{1}{x³}???[/mm]  

Weil aus [mm] $f(x)=\bruch{1}{2x²}=\frac{1}{2}\cdot x^{-2}$ [/mm] folgt [mm] $f'(x)=\frac{1}{2}\cdot (-2)\cdot x^{-3}=-\frac{1}{x^3}$, [/mm]
aber das ist eine andere Aufgabe, oder?

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de