www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 13.01.2008
Autor: Beliar

Aufgabe
Bestimme 1. und 2. Ableitung von:
f(x)=(0,5x+2)*e^(-3x)

Hallo,
bin jetzt in der Abi-Vorbereitungsphase und habe da mal eine Frage zum Ableiten. Mir ist das Ergebnis zur oben aufgeführten Aufgabe bekannt, aber irgend wie komme ich nicht dahin. Wer kann mir zeigen wo mein Fehler liegt?
f(x)=(0,5x+2)*e^(-3x) ich fange so an.
f'(x)= (0,5)*e^(-3x)+(0,5x+2)*(-3)
f'(x)=(e^(-3x))/2 +(1,5x-6)
das richtige Ergebnis ist aber:
f'(x)= -(e^(-3x)*(3x+11))/2
Kann mir jemand erklären was ich falsch mache,
Danke schon jetzt für jede Hilfe
Gruß
Beliar

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 13.01.2008
Autor: schachuzipus

Hallo Reinhard,

du hast schon richtig mit der Produktformel angefangen, aber "vergessen", bei der Ableitung des "hinteren Teils" [mm] $e^{-3x}$ [/mm] - nach Kettenregel - das [mm] $e^{-3x}$ [/mm] wieder mit aufzuschreiben, genauer hier:



>  f(x)=(0,5x+2)*e^(-3x)


>  f'(x)= (0,5)*e^(-3x)+(0,5x+2)*(-3) [mm] \red{\cdot{}e^{-3x}} [/mm]

Hier kannst du dann [mm] $e^{-3x}$ [/mm] ausklammern:

[mm] $...=e^{-3x}\cdot{}\left[0,5+(0,5x+2)(-3)\right]$ [/mm]

Dann noch ein bisschen zusammenfassen und du solltest hinkommen ;-)

>  f'(x)=(e^(-3x))/2 +(1,5x-6)
>  das richtige Ergebnis ist aber:
>  f'(x)= -(e^(-3x)*(3x+11))/2
>  Kann mir jemand erklären was ich falsch mache,
>  Danke schon jetzt für jede Hilfe
>  Gruß
>  Beliar


LG

schachuzipus

Bezug
        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 13.01.2008
Autor: Beliar

wenn ich jetzt die 2.Ableitung versuche siehts so aus:
f'(x)= e^(-3x)*(-1,5x-5,5)
f''(x)= (-1,5)*e^(-3x)+(-1,5x-5,5)(-3)*e^(-3x)
f''(x)=e^(-3x) (4,5x+15) das passt aber auch nicht, raus kommen müsste:e^(-3x)(3x+10)
wo habe ich denn hier den Fehler?

Bezug
                
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 So 13.01.2008
Autor: Adamantin


> wenn ich jetzt die 2.Ableitung versuche siehts so aus:
>  f'(x)= e^(-3x)*(-1,5x-5,5)
>  f''(x)= (-1,5)*e^(-3x)+(-1,5x-5,5)(-3)*e^(-3x)
>  f''(x)=e^(-3x) (4,5x+15) das passt aber auch nicht, raus
> kommen müsste:e^(-3x)(3x+10)
>  wo habe ich denn hier den Fehler?

Schauen wir mal ;)

[mm] f'(x)= e^{-3x}*(-1,5x-5,5)[/mm]
[mm] f''(x)=(-1,5)*e^{-3x}\red{...}+(-1,5x-5,5)(-3)*e^{-3x}[/mm]

Da fehlt doch ein Teil der Ableitung, da es sich um ein Produkt handelt!


[mm] f'(x)= e^{-3x}*(-1,5x-5,5)= -1,5x*e^{-3x}-5,5*e^{-3x}[/mm]

Produktregel auf den ersten Teil angewandt, liefert:

[mm](-1,5x*e^{-3x})' = -1,5*e^{-3x}-1,5x*e^{-3x}*(-3) = -1,5*e^{-3x} +4,5x*e^{-3x} = e^{-3x}*(-1,5+4,5x)[/mm]

Nun können wir die geamte Ableitung betrachten

[mm] f''(x)=e^{-3x}*(-1,5+4,5x)+9,5*e^{-3x} = e^{-3x}*(-1,5+4,5x+16,5) = e^{-3x}*(4,5x+15)[/mm]

glaube, das wolltest du ;)

Bezug
                        
Bezug
Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:10 So 13.01.2008
Autor: Beliar

Ja im Prinzip schon. Aber ist das Ergebnis denn richtig?
Habe nähmlich das andere im Derive bekommen.

Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 So 13.01.2008
Autor: Adamantin

Das verstehe ich jetzt nicht ganz und bin verwirrt. Ich habe natürlich die Ableitung aus deiner zweiten Frage benutzt, mit der du es ja versucht hast...dafür stimmt meine zweite Ableitung. In deiner ersten Frage steht jedoch eine ganz andere Ableitung!

f'(x)= -(e^(-3x)*(3x+11))/2

Wenn man mit dieser rechnet, kommt natürlich auch ein ganz anderes Ergebnis raus...außerdem dachte ich, du wüsstest das Ergebnis

PS: sorry...ich habe gerade gesehen, meine Antwort oben war ja überflüssig, du hattest ja selbst das Ergebnis, aber das stimmt für die Funktion auf jeden Fall! Also muss die erste Ableitung schon falsch sein, die steht ja auch in deiner ersten Frage, von daher...

Mein Post oben ist also etwas überflüssig seufz...jedenfalls hast du die Ableitung richtig gerechnet, für das angegebene Ergebnis ist allerdings eine andere Ableitung als Ausgang nötig...

PS2: du hast als richtige Ableitung in der ersten Frage angegeben:

f'(x)= -(e^(-3x)*(3x+11))/2

Allerdings taucht die bei dir nie wieder auf, außerdem steht in deiner Frage unten jetzt was von dritter Ableitung, obwohl da steht f''(x), also vllt nochmal genaue Angaben machen, damit ich nachrechnen kann ;)

Bezug
        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 13.01.2008
Autor: Beliar

Also : f(x)=(0,5x+2)e^(-3x) ist die Ausgangsgl.
f'(x)= e^(-3x)(-1,5x-5,5) die erste Ableitung
und die dritte klapp nicht so richtig als Ergebnis sollte
f''(x)=e^(-3x)(3x+10) herauskommen.Ich habe aber nicht hin bekommen.

Bezug
                
Bezug
Ableitung: andere Ableitung
Status: (Antwort) fertig Status 
Datum: 00:13 Mo 14.01.2008
Autor: Loddar

Hallo Beliar!


Du weisst doch, dass es hier am günstigsten ist, wenn Du Deine entsprechende Rechnung mitpostest.


Allerdings erhalte ich eine andere 2. Ableitung als Deine angebenene mit $f''(x) \ = \ [mm] \red{\bruch{3}{2}}*e^{-3x}*(3x+10)$ [/mm] .


Gruß
Loddar


Bezug
                        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Mo 14.01.2008
Autor: Beliar

So,ich fang nochmal an.
Die Funktion lautet: f(x)= (0,5x+2)*e^(-3x) meine
erste Ableitung wird dann:
f'(x)= 0,5*e^(-3x) + (0,5x+2)*(-3)*e^(-3x)
f'(x)= 0,5*e^(-3x) + (-1,5x-6)*    e^(-3x)
f'(x)=e^(-3x)(-1,5x-5,5)
das mit Derive ermittelte Ergebnis:
f'(x)=-0,5e^(-3x)(3x+11)
die zweite Ableitung:
f''(x)= wird dann bei mir==>e^(-3x)(4,5x+15)
Derive hat f''(x)= 1,5e^(-3x)(3x+10)
für dei zweite habe ich den gleichen Rechenweg,wie
für die erste genommen.
Ich weiss aber leider nicht was ich übersehen,oder
wo mein Fehler liegt.
Danke schon jetzt für jede Hilfe
Gruß
Beliar

Bezug
                                
Bezug
Ableitung: Tipp
Status: (Antwort) fertig Status 
Datum: 11:44 Mo 14.01.2008
Autor: crashby

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> So,ich fang nochmal an.
>  Die Funktion lautet: $ f(x)= (0,5x+2)*e^{-3x} $ meine
> erste Ableitung wird dann:
>  $ f'(x)= 0,5*e^{-3x} + (0,5x+2)*(-3)*e^{-3x} $

Hallo machen wir mal ab hier weiter :)

$  f'(x)= 0,5*\red{e^{-3x}} + (0,5x+2)*(-3)*\red{e^{-3x}} $

okay nun klammer $ \red{e^{-3x}} $ aus und du erhälst

$ f'(x)=\red{e^{-3x}}\cdot (0,5\cdot \red{1} + (0,5x+2)\cdot (-3)\cdot \red{1}}) $

Wenn du was ausklammerst, rechnest du automatisch ja im Kopf "durch" also $ \red{\frac{e^{-3x}}{e^{-3x}}} =1$

okay weiter gehts.

$ f'(x)=\red{e^{-3x}}\cdot (0,5\cdot \red{1} + (0,5x+2)\cdot (-3)\cdot \red{1}}) $

Nun einfach zusammenfassen

$ f'(x)=e^{-3x}\cdot (0,5+(0,5x+2)\cdot (-3)) $

Ich mach das mal ganz ausführlich

$ f'(x)= e^{-3x}\cdot (0,5-3\cdot (0,5x+2)) $

$ f'(x)= e^{-3x}\cdot (0,5-1,5x-6) $

Endergebnis(hoffentlich habe ich mich nicht verrechnet) lautet dann

$ f'(x)= e^{-3x}\cdot \left(-\frac{3}{2}x-\frac{11}{2}\right) $

und wenn du jetzt noch $ -\frac{1}{2} $ ausklammerst erhälst du das Ergebnis von dem CAS

Also insgesamt $ f'(x)=-\frac{1}{2}\cdot e^{-3x}\cdot (3x+11) $
lg George

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de