www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Ableitung
Ableitung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: irgendwie geht das so nicht...
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 21.01.2008
Autor: Dnake

Aufgabe
[mm] f(x)=2-x/(x-1)^2 [/mm]

Hallo,

ich bin ziemlich aus der Übung was solche Aufgaben angeht (vor langer Zeit konnte ich das mal...) und soll hier eine Kurvendiskussion machen, also erstmal die Ableitungen bilden:

als erste Ableitung habe ich: [mm] \bruch{((-x+1)^2)+2x-4+2x^2}{(x-1)^4} [/mm]

Habe das mit der Quotierntenregel gemacht. Kann (oder muss) man da anders vorgehen?
Wenn ich so weitermache bekomme ich doch einen riesigen Exponenten im Nenner raus. Glaube nicht, dass das so dann richtig ist.

Danke schonmal!

Jan

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mo 21.01.2008
Autor: Somebody


> [mm]f(x)=2-x/(x-1)^2[/mm]
>  Hallo,
>  
> ich bin ziemlich aus der Übung was solche Aufgaben angeht
> (vor langer Zeit konnte ich das mal...) und soll hier eine
> Kurvendiskussion machen, also erstmal die Ableitungen
> bilden:
>  
> als erste Ableitung habe ich:
> [mm]\bruch{((-x+1)^2)+2x-4+2x^2}{(x-1)^4}[/mm]
>  

Dieses Ergebnis scheint nicht richtig zu sein. Wenn man Faktorzerlegt und dann kürzt, erhält man [mm] $\frac{3(x+1)}{(x-1)^3}$ [/mm] und dies ist um einen Faktor $3$ daneben: siehe unten.

> Habe das mit der Quotierntenregel gemacht.

Schon richtig (der Konstante Term $2$ fällt beim Ableiten ja einfach weg).

> Kann (oder muss)
> man da anders vorgehen?

Ich denke, Du hättest zumindest einen Faktor $(x-1)$ kürzen können: immer wenn der Nenner des abzuleitenden Quotienten eine Potenz ist, ist dies möglich:

[mm]\left(2-\frac{x}{(x-1)^2}\right)' = 0-\frac{1\cdot \red{(x-1)}^2-x\cdot 2\red{(x-1)}}{\red{(x-1)}^4}=-\frac{(x-1)-x\cdot 2}{(x-1)^3}=\frac{x+1}{(x-1)^3}[/mm]


>  Wenn ich so weitermache bekomme ich doch einen riesigen
> Exponenten im Nenner raus. Glaube nicht, dass das so dann
> richtig ist.

Wie gesagt: Wenn der Nenner bereits eine Potenz ist, dann musst Du in der Ableitung unbedingt gegen das Quadrat dieses Nenners kürzen, bevor Du irgend etwas im Zähler auszumultiplizieren versuchst. Dass der Exponent im Nenner bei Anwendung der Quotientenregel immer weiter anwächst ist allerdings in der Tat unvermeidbar.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de