www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:05 So 19.09.2010
Autor: miss_alenka

Hallo ihr lieben,

würde gerne wissen ob ich die ableitung von -x [mm] e^{-0,5x^2} [/mm] richtig bestimmt habe: [mm] -2xe^{-0,5x^2)} [/mm]

vielen dank!!
lg:)

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 19.09.2010
Autor: MathePower

Hallo miss_alenka,

> Hallo ihr lieben,
>  
> würde gerne wissen ob ich die ableitung von -x [mm]e^{-0,5x^2}[/mm]
> richtig bestimmt habe: [mm]-2xe^{-0,5x^2)}[/mm]


Das musst Du nochmal nachrechnen.


>  
> vielen dank!!
>  lg:)


Gruss
MathePower

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 So 19.09.2010
Autor: miss_alenka

hm liegt wahrscheinlich am zusammenfassen

wenn man die regeln anwendet steht : [mm] -1*e^{-0,5x^2}+(-x)*e^{-0,5x^2}*(-1) [/mm]

könntest du mir vielleicht jeden schritt aufschreiben?? wäre sehr dankbar dafür, damit ich es danach nachvollziehen kann.
lg

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 19.09.2010
Autor: abakus


> hm liegt wahrscheinlich am zusammenfassen
>  
> wenn man die regeln anwendet steht :
> [mm]-1*e^{-0,5x^2}+(-x)*e^{-0,5x^2}*(-1)[/mm]
>  
> könntest du mir vielleicht jeden schritt aufschreiben??

Einen Schritt kannst du haben:
Klammere [mm] e^{-0,5x^2} [/mm] aus.
Du erhältst
[mm]-1*e^{-0,5x^2}+(-x)*e^{-0,5x^2}*(-1)[/mm]= [mm] e^{-0,5x^2}*(...) [/mm]
Und jetzt kommt dein Einsatz:


> wäre sehr dankbar dafür, damit ich es danach
> nachvollziehen kann.
>  lg


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 So 19.09.2010
Autor: miss_alenka

hmm ok also wenn ich ausklammere: [mm] e^{-0,5x^2}*(-1+(-x)*(-1) [/mm] und dann [mm] e^{-0,5x^2}*(1x-1) [/mm] ??

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Mo 20.09.2010
Autor: Blech

Hi,

Das stimmt, nur ist's

[mm] $(x^2-1)e^{-0.5x^2}$ [/mm]

Wie Teufel geschrieben hat, ist die Ableitung von

[mm] $\frac [/mm] d{dx} [mm] e^{-0.5x^2}= -xe^{-0.5x^2},$ [/mm]

weil Du [mm] $-0.5x^2$ [/mm] nachdifferenzieren mußt.

ciao
Stefan


Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 19.09.2010
Autor: Teufel

Hi!

Beim Ableiten von [mm] e^{-0,5x^2} [/mm] musst du auch noch die Kettenregel beachten.
[mm] (e^{-0,5x^2})'=-x*e^{-0,5x^2}. [/mm]

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de