www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Funktion
Status: (Frage) beantwortet Status 
Datum: 07:57 Di 11.10.2011
Autor: daniel-1982

Hallo zusammen.... ich komm bei folgender Aufgabe leider nicht auf das richtige Ergebnis, vllt. kann mir da jemand weiter helfen...

cosx/ 1- sinx


cos ist doch abgeleitet = -sin x und der untere Term = -cosx...

Mein Ergebnis wäre, wenn ich (u`v - uv´)/v² mache,
(cosx)²/1-sinx....

Ist aber falsch...:-( wär super wenn mir einer helfen könnte... gruß und danke schonmal

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Di 11.10.2011
Autor: Steffi21

Hallo

[mm] f(x)=\bruch{cos(x)}{1-sin(x)} [/mm]

u=cos(x)

u'=-sin(x)

v=1-sin(x)

v'=-cos(x)

[mm] v^{2}=(1-sin(x))^{2} [/mm]

Nun mache Quotientenregel, beachte Vorzeichen, setze Klammern

Steffi







Bezug
                
Bezug
Ableitung: cos?
Status: (Frage) beantwortet Status 
Datum: 08:21 Di 11.10.2011
Autor: daniel-1982

Hallo.. bis zu den einzelnen Ableitungen hab ichs noch hinbekommen...

Aber ich bekomme das cosx nicht weg...
weil das kann ich ja nicht kürzen und hebt sich ja auch nicht auf... ich steh auf m schlauch...

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Di 11.10.2011
Autor: fred97


> Hallo.. bis zu den einzelnen Ableitungen hab ichs noch
> hinbekommen...
>  
> Aber ich bekomme das cosx nicht weg...
> weil das kann ich ja nicht kürzen und hebt sich ja auch
> nicht auf... ich steh auf m schlauch...  


Schreib doch mal hin, was Du hast. Beachte: [mm] cos^2(x)+sin^2(x)=1 [/mm]

FRED

Bezug
                                
Bezug
Ableitung: Rechengang
Status: (Frage) beantwortet Status 
Datum: 08:49 Di 11.10.2011
Autor: daniel-1982

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo... also hier  mal mein Rechengang:

u = \cos x      u´= -\sin x
v = 1 - \sin x  v´= -\cos x

\bruch{u´v - uv´}{v²}
sieht dann bei mir so aus:

\bruch{-\sin * (1-\sin x) - \cos x *(-\cos x)}{(1 - \sin x)²


\bruch{-\sin x + \sin²x + \cos²x}{(1 - \sin x )²}


nun hab ich jetzt: \bruch{-\sin x + 1}{
(1 - \sin x)²}

Und jetzt kann ich \sin x einfach kürzen, oder ????


Bezug
                                        
Bezug
Ableitung: oh..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:50 Di 11.10.2011
Autor: daniel-1982

soorry... is was schief gegangen... kommt gleich nochmal...:-(

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Di 11.10.2011
Autor: reverend

Hallo Daniel,

so stimmts. Nur das Kürzen geht anders:

> Hallo... also hier  mal mein Rechengang:
>  
> [mm] u=\cos{x},\quad u'=-\sin{x} [/mm]
> [mm] v=1-\sin{x},\quad v'=-\cos{x} [/mm]
>
> [mm] \bruch{u´v - uv´}{v^2} [/mm]
>   sieht dann bei mir so aus:
>  
> [mm] \bruch{-\sin{x}*(1-\sin{x})-\cos{x}*(-\cos{x})}{(1 - \sin{x})^2} [/mm]
>  
>
> [mm] \bruch{-\sin x + \sin²x + \cos²x}{(1 - \sin x )²} [/mm]
>  
>
> nun hab ich jetzt: [mm] \bruch{-\sin{x}+1}{(1-\sin{x})^2} [/mm]
>  
> Und jetzt kann ich [mm] \sin [/mm] x einfach kürzen, oder ????

Nein, jetzt kannst Du [mm] (1-\sin{x}) [/mm] einfach kürzen.

Verwende doch übrigens erst einmal den Formeleditor. Der öffnet sich, wenn Du über dem Eingabefenster auf das rote [mm] \red{\Sigma} [/mm] klickst.

Grüße
reverend


Bezug
                                                
Bezug
Ableitung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Di 11.10.2011
Autor: daniel-1982

SUPER ... Vielen Dank für eure hilfen...

Das mit dem kürzen, naja, da war ich wohl n richtiger Blindfisch....

Aber dass [mm] \sin^2 x + \cos^2 x = 1 [/mm] ergibt wusst ich noch nicht... Danke ... :-)

Bezug
                                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Di 11.10.2011
Autor: fred97


> SUPER ... Vielen Dank für eure hilfen...
>  
> Das mit dem kürzen, naja, da war ich wohl n richtiger
> Blindfisch....
>
> Aber dass [mm]\sin^2 x + \cos^2 x = 1[/mm] ergibt wusst ich noch
> nicht... Danke ... :-)

Ehrlich: ?  Dieses Bild

                http://www.minfos.de/selfdxd/DirectXGraphics/theorie/degkreis.gif

hast Du noch nie gesehen ? Und den Namen Pythagoras noch nie gelesen ?

FRED


Bezug
                                                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Di 11.10.2011
Autor: daniel-1982

:-( ok .... Phytagoras hab ich schon gehört... :-(
Peinlich...

Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:58 Di 11.10.2011
Autor: daniel-1982

Hallo... also hier  mal mein Rechengang:

[mm]u = \cos x [/mm]      [mm] u´= -\sin x [/mm]
[mm]v = 1 - \sin x [/mm]       [mm] v´= -\cos x [/mm]

[mm]\bruch{u´v - uv´}{v^2}[/mm]
sieht dann bei mir so aus:

[mm]\bruch{-\sin * (1-\sin x) - \cos x *(-\cos x)}{(1 - \sin x)^2[/mm]


[mm]\bruch{-\sin x + \sin²x + \cos^2x}{(1 - \sin x )^2}[/mm]



nun hab ich jetzt:[mm] \bruch{-\sin x + 1}{ (1 - \sin x)^2}[/mm]

Und jetzt kann ich [mm] \sin [/mm] x einfach kürzen, oder ????




Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Di 11.10.2011
Autor: reverend

Hallo Daniel,

lies mal meine Antwort oben auf die erste Fassung Deiner Frage.

Grüße
rev


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de