www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ableitung arccos(x)
Ableitung arccos(x) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung arccos(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 So 27.01.2008
Autor: Marizz

Hallo,
ich versuche gerade arcus-Funktionen nachzuvollziehen und habe das Gefühl ein Brett vorm Kopf zuhaben =)
Ich habe eine Frage bezüglich der Ableitungen,...


1) zb von arccos(x) , [mm] [-1,1]\to[0,\pi]: [/mm]

Die Ableitung geht ja folgendermaßen:


arccos'(x)= [mm] \bruch{-1}{sin(arccos(x))} [/mm] = [mm] \bruch{-1}{\wurzel{1-cos²arccos(x)}} [/mm] = [mm] \bruch{-1}{\wurzel{1-x² }} [/mm]


Wie kommt man denn auf sin(arccos(x)) = [mm] \wurzel{1-cos²arccos(x)} [/mm] und dann auf [mm] \wurzel{1-x²} [/mm] ??
Ist das einfach so oder gibt es da eine Formel die ich verpasst hab?


2.) ebenso wenig kann ich die Ableitung von arctan(x) verstehen:

arctan'(x) = cos²(arctan(x))

so weit so gut, aber dann

= [mm] \bruch{1}{tan²(arctan(x))} [/mm] = [mm] \bruch{1}{1+x²} [/mm]


Wäre lieb, wenn mir jemand diese ganzen Zwischenschritte erklären könnte...

Danke im Vorraus =)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitung arccos(x): Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 So 27.01.2008
Autor: Bastiane

Hallo Marizz!

> arccos'(x)= [mm]\bruch{-1}{sin(arccos(x))}[/mm] =
> [mm]\bruch{-1}{\wurzel{1-cos²arccos(x)}}[/mm] =
> [mm]\bruch{-1}{\wurzel{1-x² }}[/mm]
>  
>
> Wie kommt man denn auf sin(arccos(x)) =
> [mm]\wurzel{1-cos²arccos(x)}[/mm] und dann auf [mm]\wurzel{1-x²}[/mm] ??

Na, es gilt doch [mm] \sin^2+\cos^2=1, [/mm] also auch [mm] \sin=\sqrt{1-\cos^2} [/mm]

und außerdem:

[mm] \cos(arccos(x))=x [/mm] und [mm] cos^2(x)=cos(x)*cos(x), [/mm] also [mm] cos^2(arccos(x))=cos(arccos(x))*cos(arccos(x))=x*x=x^2 [/mm] :-)

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ableitung arccos(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:36 So 27.01.2008
Autor: Marizz

Hey Bastiane,

vielen, vielen Dank für deine Antwort, du hast mir auf jeden Fall weitergeholfen!

Ich denke mal mein Prof hat da einen Tippfehler im Skript, statt [mm] \bruch{-1}{\wurzel{1-cos²*arccos(x)}} [/mm] müsste also  [mm] \bruch{-1}{\wurzel{1-cos²(arccos(x))}} [/mm] stehen...

Kurze nachfrage, wenn
cos(arcosx)= x   ist dann auch
arccos(cosx)= x ?

und also arccosx = [mm] \bruch{1}{cosx} [/mm]

ist das richtig?

Grüße Marizz

Bezug
                        
Bezug
Ableitung arccos(x): Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 So 27.01.2008
Autor: Event_Horizon

Hallo!

> Hey Bastiane,
>  
> vielen, vielen Dank für deine Antwort, du hast mir auf
> jeden Fall weitergeholfen!
>  
> Ich denke mal mein Prof hat da einen Tippfehler im Skript,
> statt [mm]\bruch{-1}{\wurzel{1-cos²*arccos(x)}}[/mm] müsste also  
> [mm]\bruch{-1}{\wurzel{1-cos²(arccos(x))}}[/mm] stehen...
>


Naja, Tippfehler eher nicht. Hinter dem cos² steht ja nix anderes, was als Argument dienen  könnte. Demnach ist der arccos das Argument, und man kann auch die Klammern weg lassen. Aber mit Klammern ists deutlicher.

> Kurze nachfrage, wenn
> cos(arcosx)= x   ist dann auch
> arccos(cosx)= x ?

Generell erstmal ja, aber man muß aufpassen. Ein einfacheres Beispiel:

[mm] \wurzel{x^2} [/mm]

und

[mm] \wurzel{x}^2 [/mm]


gilt beides nur, wenn [mm] x\in\IR^+_0 [/mm] ist. Der obere Teil liefert ja immer nur den Betrag von x, schluckt also das Vorzeichen. Die untere Formel ist für negative Zahlen erst gar nicht definiert.

Überlege auch, wie man die Ableitung zeichnet: Man spiegelt die Funktion an der 1. Winkelhalbierenden. Bei der Parabel wird dabei zuvor der linke Zweig abgeschnitten! Das ist der, mit den negativen x!


Der Sinus ist periodisch, wenn man den einfach spiegelt, gäbe es auch mehrere y-Werte für einen x-Wert. Auch hier schneidet man, man benutzt nur den Teil von -90 bis +90° (Ich bleibe mal im Gradmaß)

Das führt dazu, daß der arcsin dir auch nur Werte in diesem Bereich liefert. Nun ist der sin aber periodisch, die Gleichung sin(x)=0,5 hätte neben der vom arcsin gelieferten Lösung noch weitere, die sich z.B. um n*360 unterscheiden. Das führt z.B. zu:

acrsin(360)=0



>  
> und also arccosx = [mm]\bruch{1}{cosx}[/mm]

Woher hast du das? Man bezeichnet eine Umkehrfunktion gerne mit [mm] f^{-1}, [/mm] aber damit ist NICHT [mm] \frac{1}{f} [/mm] gemeint. Die Schreibweise ist daher leider zweideutig.


>  
> ist das richtig?
>
> Grüße Marizz


Bezug
        
Bezug
Ableitung arccos(x): zu 2) arctan'
Status: (Antwort) fertig Status 
Datum: 11:15 So 27.01.2008
Autor: angela.h.b.

>
> 2.) ebenso wenig kann ich die Ableitung von arctan(x)
> verstehen:
>  
> arctan'(x) = cos²(arctan(x))


Hallo,

das geht so:

t:= arctanx

==> tan(t)=x   ==> [mm] \bruch{sint}{cost}=x [/mm]  ==> [mm] x^2=\bruch{sin^2t}{cos^2t}= \bruch{1-cos^2t}{cos^2t}=\bruch{1}{cos^2t}-1 [/mm]  ==> [mm] x^2+1=\bruch{1}{cos^2t} [/mm] ==> [mm] cos^2t=\bruch{1}{x^2+1}, [/mm]

womit wir oben sind:

[mm] \bruch{1}{x^2+1}=cos^2t=cos²(arctan(x)). [/mm]

(Nebenbei: wenn ich's nicht grad gestern mit meinem Söhnchen gelernt hätte, wär's mir wohl heute nicht eingefallen - obgleich es nicht wirklich schwierig ist.)

Gruß v. Angela





>  
> so weit so gut, aber dann
>  
> = [mm]\bruch{1}{tan²(arctan(x))}[/mm] = [mm]\bruch{1}{1+x²}[/mm]
>  
>
> Wäre lieb, wenn mir jemand diese ganzen Zwischenschritte
> erklären könnte...
>  
> Danke im Vorraus =)
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de