www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung bestimmen
Ableitung bestimmen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 04.11.2008
Autor: Mary24782

Aufgabe
Bestimme die Ableitung der folgenden Funktion:

y= [mm] \bruch{x²}{\wurzel{1-x²}} [/mm]

Leider komme ich bei dieser Aufgabe nicht weiter und ich wäre sehr dankbar, wenn einer sich einer meinen Lösungsansatz mal ansehen könnte.

y'= [mm] \bruch{2x*(1-x²)^{0.5}-x³*0.5*(1-x²)^{-0.5}}{(1-x²)} [/mm]


Die Lösung dieser Aufgabe soll lauten:

y'= [mm] \bruch{2x-x³}{(1-x²)^{1,5}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Di 04.11.2008
Autor: steppenhahn


> Bestimme die Ableitung der folgenden Funktion:
>  
> y= [mm]\bruch{x²}{\wurzel{1-x²}}[/mm]
>  Leider komme ich bei dieser Aufgabe nicht weiter und ich
> wäre sehr dankbar, wenn einer sich einer meinen
> Lösungsansatz mal ansehen könnte.
>  
> y'= [mm]\bruch{2x*(1-x²)^{0.5}-x³*0.5*(1-x²)^{-0.5}}{(1-x²)}[/mm]

Hallo!

Dein Lösungsansatz (Quotientenregel) ist fast richtig. Allerdings muss es lauten:

[mm]y' = \bruch{2x*(1-x²)^{0.5}\red{+}x³*\red{1}*(1-x²)^{-0.5}}{(1-x²)}[/mm]

Weil die innere Ableitung von [mm] \sqrt{1-x^{2}} [/mm] nämlich -2x ist. Dann "kürzen" sich das provisorische Minus der Quotientenregel und das durch die innere Ableitung entstehende zu einem Plus :-)
Und die 0.5 aus der äußeren Abl. mit der 2 aus der inneren (rote 1).

Um zu dem gewünschten Ergebnis zu kommen, musst du dir den Nenner anschauen: Was wollen wir dort stehen haben? Genau,

[mm] (1-x^{2})^{1,5} [/mm]

Was steht im Moment dort?

[mm] (1-x^{2})^{1} [/mm]

Mit was könnten wir den Bruch erweitern, sodass

[mm] (1-x^{2})^{1}*a [/mm] = [mm] (1-x^{2})^{1,5} [/mm]

Denk an Potenzgesetze!
Und wenn du dann den Faktor a weißt, mit dem du den Bruch erweitern musst, damit schonmal der Nenner stimmt, guckst du einfach was dann beim Erweitern im Zähler passiert - es kommt deine genannte Musterlösung heraus :-)

Stefan.

> Die Lösung dieser Aufgabe soll lauten:
>  
> y'= [mm]\bruch{2x-x³}{(1-x²)^{1,5}}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  

Bezug
                
Bezug
Ableitung bestimmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:17 Di 04.11.2008
Autor: Mary24782

Vielen Dank für die schnelle Anwort!

Eine kleine Frage hätte ich noch. Hier einmal mein weiterer Lösungsansatz:

y'= [mm] \bruch{2x*(1-x²)+x³*(1-x²)^{0}}{(1-x²)^{1.5}} [/mm]

Die Funktion habe ich jetzt erweitert mit [mm] (1-x²)^{0.5}. [/mm]

[mm] x³*(1-x²)^{0} [/mm] = x³
aber wie kürze ich jetzt (1-x²) weg oder habe ich schon einen Fehler beim erweitern gemacht? Wäre sehr dankbar über einen kleinen Tipp.

Bezug
                        
Bezug
Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 04.11.2008
Autor: Steffi21

Hallo, der Term [mm] (1-x^{2})^{0} [/mm] ist gleich 1, somit steht im Zähler [mm] 2x\cdot{}(1-x²)+x³, [/mm] löse jetzt die Klammern auf, fasse zusammen, den Nenner hast du ja schon, fertig, Steffi

Bezug
                                
Bezug
Ableitung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Di 04.11.2008
Autor: Mary24782

Bei dieser Aufgabe konnte ich die Ableitung bestimmen, aber wie in der vorigen Aufgabe habe ich Probleme die Funktion so zu kürzen, erweitern oder umzustellen, um auf die vorgefertigte Lösung zu kommen. Wäre dankbar über einen kleinen Tipp!

Meine Lösung:

y' = [mm] \bruch{4*(1-x²)}{(1-x)^{4}} [/mm]

Musterlösung:

y' = [mm] \bruch{4*(1+x)}{(1-x)³} [/mm]

Bezug
                                        
Bezug
Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 04.11.2008
Autor: steppenhahn


> Bei dieser Aufgabe konnte ich die Ableitung bestimmen, aber
> wie in der vorigen Aufgabe habe ich Probleme die Funktion
> so zu kürzen, erweitern oder umzustellen, um auf die
> vorgefertigte Lösung zu kommen. Wäre dankbar über einen
> kleinen Tipp!
>  
> Meine Lösung:
>  
> y' = [mm]\bruch{4*(1-x²)}{(1-x)^{4}}[/mm]
>  
> Musterlösung:
>  
> y' = [mm]\bruch{4*(1+x)}{(1-x)³}[/mm]

Hallo!

Benutze im Zähler die 3. binomische Formel bei [mm] 1-x^{2}, [/mm] dann wirst du sehen, dass du kürzen kannst :-)

Stefan.

Bezug
                                        
Bezug
Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Di 04.11.2008
Autor: reverend

3. binomischer Satz:

[mm] (a+b)(a-b)=a^2-b^2 [/mm]

oder hier: [mm] 1-x^2=(1+x)(1-x) [/mm]

Bezug
                                        
Bezug
Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Di 04.11.2008
Autor: Mary24782

Vielen Dank für die schnelle und kompetente Hilfe, ich konnte die Aufgaben sehr gut verstehen!

LG Mary

Bezug
                                
Bezug
Ableitung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 04.11.2008
Autor: Mary24782


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de