www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung der Umkehrfunktion
Ableitung der Umkehrfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung der Umkehrfunktion: Beweis einer Aussage
Status: (Frage) beantwortet Status 
Datum: 12:32 Fr 21.11.2008
Autor: Deuterinomium

Aufgabe
Beweisen sie den "kleinen" Satz über die Ableitung der Umkehrfunktion.

Satz:(Ableitung der Umkehrfunktion)
Sei [mm] $f:\mathbb{D}\longrightarrow\mathbb{R}$ [/mm] eine umkehrbare Funktion und [mm] $f^{-1}:f(\mathbb{D})\longrightarrow \mathbb{D}$ [/mm] die zugehörige Umkehrfunktion.
Falls $f$ in [mm] $a\in\mathbb{D}$ [/mm] differenzierbar und [mm] $f(a)\neq [/mm] 0$ ist, dann ist [mm] $f^{-1}$ [/mm] differenzierbar in [mm] $b=f(a)\in f(\mathbb{D})$ [/mm] mit Ableitung:
[mm] $$(f^{-1})'(b)=\frac{1}{f(a)}=\frac{1}{f'(f^{-1}(b))}$$ [/mm]

Wir hatten diesen Satz im Tutorium und sollten ihn beweisen. Reicht es dann so vorzugehen?


Beweis:
Kettenregel:
[mm] \forall x\in\mathbb{D}: x=f^{-1}(f(x)) \Longrightarrow 1=(f^{-1})'(f(x))\cdot [/mm] f'(x) [mm] \Longrightarrow (f^{-1})'(f(x))=\frac{1}{f'(x)} [/mm]

bzw.

[mm] \forall y\in f(\mathbb{D}): y=f(f^{-1}(y)) \Longrightarrow 1=f'(f^{-1}(y))\cdot (f^{-1})'(y) \Longrightarrow (f^{-1})'(y)=\frac{1}{f'(f^{-1}(y))} [/mm]

Reicht das? Oder muss man auch zeigen, dass [mm] f^{-1}(y) [/mm] existiert?

        
Bezug
Ableitung der Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 21.11.2008
Autor: fred97


> Beweisen sie den "kleinen" Satz über die Ableitung der
> Umkehrfunktion.
>  Satz:(Ableitung der Umkehrfunktion)
>  Sei [mm]f:\mathbb{D}\longrightarrow\mathbb{R}[/mm] eine umkehrbare
> Funktion und [mm]f^{-1}:f(\mathbb{D})\longrightarrow \mathbb{D}[/mm]
> die zugehörige Umkehrfunktion.
>  Falls [mm]f[/mm] in [mm]a\in\mathbb{D}[/mm] differenzierbar und [mm]f(a)\neq 0[/mm]
> ist, dann ist [mm]f^{-1}[/mm] differenzierbar in [mm]b=f(a)\in f(\mathbb{D})[/mm]
> mit Ableitung:
>  [mm](f^{-1})'(b)=\frac{1}{f(a)}=\frac{1}{f'(f^{-1}(b))}[/mm]
>  


Du hast Dich sicher nur verschrieben. Es muß f'(a) [mm] \not= [/mm] 0 heißen. Ebenso muß in der Formel oben f'(a) im Nenner stehen.



> Wir hatten diesen Satz im Tutorium und sollten ihn
> beweisen. Reicht es dann so vorzugehen?
>  
>
> Beweis:
>  Kettenregel:
>  [mm]\forall x\in\mathbb{D}: x=f^{-1}(f(x)) \Longrightarrow 1=(f^{-1})'(f(x))\cdot[/mm]
> f'(x) [mm]\Longrightarrow (f^{-1})'(f(x))=\frac{1}{f'(x)}[/mm]
>  
> bzw.
>  
> [mm]\forall y\in f(\mathbb{D}): y=f(f^{-1}(y)) \Longrightarrow 1=f'(f^{-1}(y))\cdot (f^{-1})'(y) \Longrightarrow (f^{-1})'(y)=\frac{1}{f'(f^{-1}(y))}[/mm]
>  
>
> Reicht das? Oder muss man auch zeigen, dass [mm]f^{-1}(y)[/mm]
> existiert?


Nein. So kannst Du den Satz nicht beweisen ! Wenn Du wie oben die kettenregel verwendest, mußt Du die Differenzierbarkeit von [mm] f^{-1} [/mm] voraussetzen. Die willst Du aber doch beweisen !


FRED

Bezug
                
Bezug
Ableitung der Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Fr 21.11.2008
Autor: Deuterinomium

Ja stimmt das waren Tipfehler und das mit dem verhunzten Beweis ist auch klar!

Also muss man wohl doch mit dem Differenzenquotienten arbeiten:
[mm] f^{-1}'(b)=\limes_{y\rightarrow b}( \bruch{ f^{-1}(y)-f^{-1}(b))}{y-b})[/mm]
Beim nächsten Schritt bin ich mir ziemlich unsicher: Wie komm ich denn nun dazu dass es dann x gibt, mit f(x)=y und
[mm]\limes_{y\rightarrow b}\bruch{f^{-1}(y)-f^{-1}(b)}{y-b}=\limes_{x\rightarrow a}\bruch{x-a}{f(x)-f(a)}....[/mm]

Liegt das an der Existenz der Umkehrfunktion und der Stetigkeit von f ?

Der Rest wäre dann ja wieder klar!

Gruß Deuterinomium

Bezug
                        
Bezug
Ableitung der Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Fr 21.11.2008
Autor: fred97

Es ist doch y [mm] \in f(\mathbb{D}), [/mm] also ex. x [mm] \in \mathbb{D} [/mm] mit f(x) =y

FRED






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de