www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung e-Funktion
Ableitung e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung e-Funktion: Frage zu Ableitung
Status: (Frage) beantwortet Status 
Datum: 20:46 Mo 09.01.2006
Autor: azrax

Aufgabe
Erste Ableitung für f(x)= 10x*e^(-0.5x²)

Könnte mir jemand Schritt für Schritt erklären wie ich diese Funktion Ableite?

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung e-Funktion: Produkt- und Kettenregel
Status: (Antwort) fertig Status 
Datum: 20:59 Mo 09.01.2006
Autor: Loddar

Hallo azrax,

[willkommenmr] !!


Bei dieser Funktion musst Du sowohl mit der MBProduktregel als auch mit der MBKettenregel arbeiten.


$f(x) \ = \ [mm] \underbrace{10x}_{=u}*\underbrace{e^{-0.5x^2}}_{=v}$ [/mm]

$u \ = \ 10x$     [mm] $\Rightarrow$ [/mm]     $u' \ = \ 10$

$v \ = \ [mm] e^{-0.5x^2}$ [/mm]

Und hier müssen wir für $v'_$ nun die MBKettenregel anwenden, da im Exponenten der e-Funktion nicht nur $x_$ steht, sondern ein anderer Term.

Die MBKettenregel lautet (verbal):

"äußere Ableitung" mal "innere Ableitung"


Die äußere Funktion ist die e-Funktion mit [mm] $e^{(...)}$ [/mm] .

äußere Ableitung: [mm] $\left[ \ e^{(...)} \ \right]' [/mm] \ = \ [mm] e^{(...)}$ [/mm]


Die innere Funktion lautet $(...) \ = \ [mm] -0.5*x^2$ [/mm] .

Das können wir auch ableiten zu ...

innere Ableitung: $(...)' \ =\ [mm] \left[ \ -0.5*x^2 \ \right]' [/mm] \ = \ [mm] -0.5*2*x^1 [/mm] \ = \ -x$


Dies packen wir nun zusammen zu:

$v' \ = \ [mm] \left[ \ e^{(...)} \ \right]' [/mm] * (...)' \ =\ [mm] e^{-0.5*x^2}*(-x) [/mm] \ =\ [mm] -x*e^{-0.5*x^2}$ [/mm]


Und dies setzen wir nun ein in die MBProduktregel:

[mm] $\left( \ u*v \ \right)' [/mm] \ = \ u'*v + u*v'$


Was erhältst Du nun?


Gruß
Loddar


Bezug
                
Bezug
Ableitung e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Di 10.01.2006
Autor: azrax

Hallo,

Schonmal vielen Dank für deine Antwort.

nach den folgenden Regeln erhalte ich 10*e^(-0.5x²)-10²*e^(-0.5x²) was dann f'(x)= 10*(1-x²)*e^(-0.5x²) ergibt. Sollte korrekt sein?
und als 2. Ableitung komm ich auf [mm] f''(x)=-10x*(2x^3-6x)*e^(-0.5x²)[/mm]

Bezug
                        
Bezug
Ableitung e-Funktion: Korrektur zur 2. Ableitung
Status: (Antwort) fertig Status 
Datum: 19:04 Di 10.01.2006
Autor: Loddar

Hallo azrax!


> f'(x)=10*(1-x²)*e^(-0.5x²)

[daumenhoch] Richtig!


> und als 2. Ableitung komm ich auf
> [mm]f''(x)=-10x*(2x^3-6x)*e^(-0.5x²)[/mm]  

[notok] Bitte rechne hier nochmal nach.

In der Klammer erhalte ich: $f''(x) \ = \ [mm] -10x*\left(\red{3-x^2}\right)*e^{-0.5x^2}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Ableitung e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 11.01.2006
Autor: s.nahrhold

darf ich fragen, wie ihr auf die zweite ableitung kommt? ich hab grad keine ahnung!
danke

Bezug
                                        
Bezug
Ableitung e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 11.01.2006
Autor: Disap


> darf ich fragen, wie ihr auf die zweite ableitung kommt?
> ich hab grad keine ahnung!
>  danke

Mit der MBProduktregel und MBKettenregel und indem man die erste Ableitung noch einmal ableitet. Oder was willst du da genau wissen

(sofern diese stimmt):
[mm] f'(x)=10*(1-x²)*e^{-0.5x²} [/mm]

f''(x) = [mm] -20x*e^{-0.5x²} [/mm] - [mm] x*e^{-0.5x²}*10*(1-x²) [/mm]

[mm] =-20x*e^{-0.5x²} [/mm] - [mm] e^{-0.5x²}*(10x-10x^3) [/mm]

= [mm] e^{-0.5x²} [/mm] (-20x - [mm] 10x+10x^3) [/mm]

= [mm] e^{-0.5x²} (-30x+10x^3) [/mm]

= [mm] 10x*e^{-0.5x²} (-3+x^2) [/mm]

Ist das selbe, wie Loddar auch schon gesagt hat.

$ f''(x) \ = \ [mm] -10x\cdot{}\left(\red{3-x^2}\right)\cdot{}e^{-0.5x^2} [/mm] $

Da "Math. Background: Mathe-Lehrer Sek. II" habe ich mal auf Farben verzichtet ;-)

Schöne Grüße Disap

Bezug
                                                
Bezug
Ableitung e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Do 12.01.2006
Autor: azrax

Danke, nun bin ich auch auf diese Ableitung gekommen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de