www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung einer Funktion
Ableitung einer Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Fr 29.09.2006
Autor: Warlock

Hi

Ich hätte eine kurze Frage an euch.

Wie kann ich eine Ableitung einer Funktion zeichnen ( die Stammfunktion ist in einen Diagramm dargestellt )

Die genaue Frage lautet so: Zeichnen sie die Ableitung der Funktion, die im folgenden Diagramm dargestellt ist.

Wie kann ich das machen?

        
Bezug
Ableitung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 29.09.2006
Autor: M.Rex


> Hi
>  
> Ich hätte eine kurze Frage an euch.
>
> Wie kann ich eine Ableitung einer Funktion zeichnen ( die
> Stammfunktion ist in einen Diagramm dargestellt )
>  
> Die genaue Frage lautet so: Zeichnen sie die Ableitung der
> Funktion, die im folgenden Diagramm dargestellt ist.
>  
> Wie kann ich das machen?

Hallo

Indem du markante Stellen derStammfunktion einträgst.
Ein  Hoch- oder Tiefpunkt von f wird zu einer Nullstelle von f'.
Ein Punkt, an dem die Steigung besonders stark ist, wird zu einem Hoch- bzw. Tiefpunkt, je nachdem, ob f gerade fallend ist, oder steigt.

Marius


Bezug
        
Bezug
Ableitung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Sa 30.09.2006
Autor: Warlock

Hi

Danke für eure ( deine Antwort ). Das hört sich logisch an, aber leider hab ich überhaupt keinen Tau, wie ich das angehen soll.

Kannst mir vielleicht ein kleines Beispiel nennen ( mit Zahlen ), wie du es einer Extremstelle einen Hoch bzw. Tiefpunkt machen kannst.

Mein Problem ist auch, dass ich nicht genau weiß, um welche Funktion es sich handelt ( tendiere zu einer Sinus Funktion )

Hier ist der Link, wo ihr das Beispiel sehen könnt.
[]http://geol28.uni-graz.at/~hergarte/06W/621700/uebung1.pdf

Hoffe ihr könnt mir weiterhelfen. Bin normal nicht so ,, blöd ,, in Mathe, hab das aber in meiner Schulzeit nie , das Ableiten einer Funktion von einen Diagramm, durchgemacht.

mfg Chris

mfg Christan

Bezug
                
Bezug
Ableitung einer Funktion: Tendenz okay
Status: (Antwort) fertig Status 
Datum: 11:14 Sa 30.09.2006
Autor: Infinit

Hallo Christian,
Deine Vermutung ist schon richtig, dass diese Kurve etwas mit einer Sinusfunktion zu tun hat, und wenn ich mir die Extremwerte anschaue, die symmetrisch zu x = 0 leigen, so bin ich sicher, dass dies die [mm] \bruch{\sin (x)}{x} [/mm] - Kurve ist. Hiervon kannst Du ja mal analytisch mit Hilfe der Quotientenregel die Ableitung berechnen. Ansonsten hilft bei der graphischen Methode nur der bereits gegebene Hinweis, dass Extemstellen der Kurve, also die Hoch- und Tiefpunkte, zu Nullstellen in der Ableitung werden und die Frage, in welcher Richtung die Ableitung durch diese Nullstellen geht, lässt sich lösen, indem man die Steigung der Kurve abschnittsweise sich anschaut. Positive Steigung führt zu positiven Werten in der Ableitung, negative Steigung zu negativen Werten. Mehr kann man da nicht machen, insbesondere dann nicht, wenn man nicht weiss, wie die abzuleitende Funktion analytisch ausgedrückt werden kann, und genau das weisst Du ja eigentlich nicht.
Viele Grüße,
Infinit

Bezug
                        
Bezug
Ableitung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Sa 30.09.2006
Autor: Warlock

Zuerst einmal danke für deine Tipps.

Aber leider komme ich immer noch nicht weiter. Ich habe bis jetzt nur Funktionen abgeleitet, wo ich wusse , wie man sie analytisch ausdrückt.

ICh weiß nämlich nicht, wie ich die Werte aus dem Diagramm umsetzen soll.

Ein Beispiel - von der Funktion vom oberen Link: f(1) = 0 - Das ist der Hochpunkt oder?

Eine Stelle wo die Funktion extrem ansteigt oder fällt ist das z.b. f( 0,2 ) = -2,3, oder?

Aber was soll ich jetzt weitermachen, mir fehlt einfach eine Stammfunktion.

Wie kann ich f(1) = 0 ableiten?


Bezug
                                
Bezug
Ableitung einer Funktion: Tipp
Status: (Antwort) fertig Status 
Datum: 19:36 Sa 30.09.2006
Autor: clwoe

Hi,

du brauchst die Funktion die du gegeben hast nicht ableiten. Den Tipp den du schon bekommen hast wie die Funktion aussehen sollte, also [mm] f(x)=\bruch{sin(x)}{x} [/mm] ist übrigens richtig, ich habe es in meinem Programm am Rechner überprüft, aber das spielt überhaupt keine Rolle.

Wenn man sich überlegt das du hier einen Graphen gegeben hast von dem du den Graphen der Ableitung finden sollst, dann überlegt man sich wie dieser aussehen könnte. Angenommen dein vorhandener Graph sei F(x), dann ist doch F'(x)=f(x).
Das heißt, das dort wo F'(x)=0=f(x)=0 und das heißt, das dort wo dein gegebener Graph seine Hochpunkte hat, dein gesuchter Graph die Nullstellen hat. Also hast du schon mal 3 0-Stellen gegeben. Weiter macht man nun F''(x)=f'(x)=0. Das heißt, das dort wo dein gegebener Graph seine Wendepunkte hat der gesuchte Graph seine Hochpunkte hat. NUn hast du schon zwei weitere Stellen. Warum der zweite Extremwert des Graphen der Ableitung im negativen liegen muss, hat was mit der Flächenbilanz zu tun, die wieder 0 sein muss.

Ich hoffe ich konnte dir weiterhelfen!

Gruß,
clwoe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de