www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung einer Funktion
Ableitung einer Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 17.01.2007
Autor: belimo

Aufgabe
Bestimmen Sie an der Stelle x=2 jeweils die Gleichungen der Tangente und der Normalen der folgenden Funktionskurven:

a) [mm] f(x)=3x^{2}+4x+5 [/mm]

Hallo Leute

Das sieht für euch sicher ganz einfach ist, was es ja wahrscheinlich auch ist.

Mein Lösungsansatz sieht so aus: Ich muss ja nun zuerst die Ableitung (=Steigung) der obigen Funktion bei x=2 ausrechnen. Das versuchte ich so:

[mm] f(x)=3x^{2}+4x+5 [/mm] => [mm] f'(x)=2x^{1}+4x^{0}+0=2x+4 [/mm]

Setzte ich nun für x den Wert zwei ein, erhalte ich 8, was also die gesuchte Steigung der Tangente bei x=2 wäre. Dummerweise meint die Lösung die Funktion der Tangente ist:

y=16x-7, womit meine 8 falsch ist.

Kann mir jemand weiterhelfen? Vielen Dank schon im Voraus.

        
Bezug
Ableitung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 17.01.2007
Autor: Kroni

Deine Ableitung stimmt nicht:

f(x)=3x²+4x+5
=>
f'(x)=2*3x+4
Denn: die Faktoren vor dem x, in diesem Fall die 3 vor [mm] x^2 [/mm] bleibt stehen.
[mm] f(x)=cx^b [/mm]
f'(x)=bcx^(b-1) für b>0
D.h. f'(x)=6x+4...
Du hast dort nämlich dan einfach die 3 vergessen.

Damit nochmal durchrechnen und die Lösung sollte dann stimmen.

Slaín,

Kroni

Bezug
                
Bezug
Ableitung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mi 17.01.2007
Autor: belimo

Danke... logisch, bin ich blöd ;-)

Noch eine kurze Nachfrage wegen der "Normalen"

Anscheinend setzt unser Dozent voraus, dass man das einfach kann ;-) Weil ich noch nie was davon gehört habe, schaute ich unter:

http://de.wikipedia.org/wiki/Normale

Ist nun also die Funktion der Tangenten y=16x-7 ist gemäss Wikipedia, die Steigung der Normalen [mm] \bruch{-1}{16} [/mm] (=m)

Setzt ich nun also in

y=mx+b
[mm] 25=\bruch{-1}{16}x+b [/mm]

erhalte ich für b 199/8 statt 201/8 wie in der Lösung. Weiss jemand warum?

Die oben eingesetzten 25 errechnen sie natürlich einfach aus der Ursprungsfunktion bei x=2

Bezug
                        
Bezug
Ableitung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Do 18.01.2007
Autor: Bastiane

Hallo belimo!

> Anscheinend setzt unser Dozent voraus, dass man das einfach
> kann ;-) Weil ich noch nie was davon gehört habe, schaute
> ich unter:
>  
> http://de.wikipedia.org/wiki/Normale
>  
> Ist nun also die Funktion der Tangenten y=16x-7 ist gemäss
> Wikipedia, die Steigung der Normalen [mm]\bruch{-1}{16}[/mm] (=m)
>  
> Setzt ich nun also in
>  
> y=mx+b
>  [mm]25=\bruch{-1}{16}x+b[/mm]
>  
> erhalte ich für b 199/8 statt 201/8 wie in der Lösung.
> Weiss jemand warum?

Da musst du dich wohl wieder verrechnet haben:

[mm] 25=\br{-1}{16}*2+b \gdw 25+\br{1}{8}=b \gdw b=\br{200+1}{8}=b [/mm]

Da hapert's wohl an der Bruchrechnung!? ;-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de