www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung einer e-Funktion
Ableitung einer e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer e-Funktion: Exponentialfunktion mit e
Status: (Frage) beantwortet Status 
Datum: 14:44 Do 04.04.2013
Autor: Caro1994

Aufgabe
Berechnen Sie die Extremstellen der folgenden Umsatzfunktion:
$u(t)= [mm] 2e^{- (t - 3)^2}$ [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Unser Lehrer hat folgende Lösung angegeben:
$u' (t) = [mm] 2e^{-(t-3)^2} \cdot [/mm] (6-2t)$

Die aüßere Ableitung kann ich nachvollziehen, aber die innere gar nicht! Ich weiß nicht wie man auf diese Zahlen kommt. Normalerweise müsste die 3 im Exponenten doch beim ableiten wegfallen oder? Und die 1 vor dem t würde sich auch nicht auf 2 erhöhen?


Danke im Voraus!!
Liebe Grüße :)

        
Bezug
Ableitung einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Do 04.04.2013
Autor: Caro1994

Was undeutlich ist: [mm] -(t-3)^2 [/mm] ist der komplette Exponent!!

Bezug
                
Bezug
Ableitung einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Do 04.04.2013
Autor: Valerie20

Ich habe das in deinem Post editiert. Klick mal auf die Formel, dann weißt du wie man die Exponenten richtig schreibt.

Valerie

Bezug
        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Do 04.04.2013
Autor: Valerie20

Hi!

> Berechnen Sie die Extremstellen der folgenden
> Umsatzfunktion:
> u(t)= 2e^- (t - [mm]3)^2[/mm]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Unser Lehrer hat folgende Lösung angegeben:
> u' (t) = [mm]2e^-(t-3)^2[/mm] * (6-2t)

>

> Die aüßere Ableitung kann ich nachvollziehen, aber die
> innere gar nicht! Ich weiß nicht wie man auf diese Zahlen
> kommt. Normalerweise müsste die 3 im Exponenten doch beim

Die äußere Ableitung ist die E-funktion. Die innere ein Polynom 2. Grades.
Du hast für die innere Ableitung 2 Möglichkeiten:

1. Du schreibst das als Polynom und leitest ab:

[mm] $i(x)=-(t-3)^2$=-(t^2-6t+9)=-t^2+6t-9$ [/mm]
$i'(x)=-2t+6=6-2t$

2. Du nimmst den geklammerten Term wie er ist und leitest ab. Hierbei ist aber die Kettenregel zu beachten.
Du hast dann im Prinzip wieder eine innere und eine äußere Ableitung:

Außen wäre: [mm] $a(x)=(i(x))^2$ [/mm]
innen wäre: $i(x)=(t-3)$

Also insgesamt: [mm] $f'(x)=((t-3)^2)'=2\cdot(t-3)\cdot [/mm] 1$

Das Minus des Exponenten habe ich hier weggelassen.

Valerie
 

Bezug
                
Bezug
Ableitung einer e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:00 Do 04.04.2013
Autor: Caro1994

Danke!! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de