www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung einer e-funktion
Ableitung einer e-funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:32 Di 28.04.2009
Autor: pucki

Ich habe [mm] f(t)=a*t*e^{-0,25*t} [/mm]
dann wäre doch [mm] f'(t)=\bruch{-(a*t*e^{-0,25*t})}{4} [/mm] oder nicht?
aber in der Lösung steht: [mm] f'(t)=\bruch{a*e^{\bruch{t}{4}}(4-t)}{4} [/mm]

Wie kommt man denn darauf?

Lg pucki

        
Bezug
Ableitung einer e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:34 Di 28.04.2009
Autor: pucki

und wie is das mit der 2. Ableitung?

Bezug
                
Bezug
Ableitung einer e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Di 28.04.2009
Autor: angela.h.b.


> und wie is das mit der 2. Ableitung?  

Hallo,

was genau willst Du jetzt wissen? Bitte etwas konkreter.

Für die 2.Ableitung leitet man die erste ab...

Gruß v. Angela




Bezug
        
Bezug
Ableitung einer e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Di 28.04.2009
Autor: angela.h.b.


> Ich habe [mm]f(t)=a*t*e^{-0,25*t}[/mm]
>  dann wäre doch [mm]f'(t)=\bruch{-(a*t*e^{-0,25*t})}{4}[/mm] oder
> nicht?

Hallo,

nein.

Du hast vergessen, daß Du auch noch mit der Produktregel arbeiten muß wegen des Faktors t vor dem e.

> aber in der Lösung steht:
> [mm]f'(t)=\bruch{a*e^{\bruch{t}{4}}(4-t)}{4}[/mm]
>  
> Wie kommt man denn darauf?

Das ist auch falsch. Es muß heißen > [mm]f'(t)=\bruch{a*e^{\red{-}\bruch{t}{4}}(4-t)}{4}[/mm], und man erhält das mit der Produktregel.


Du kannst sagen: g(t)=a*t, [mm] h(t)=e^{-0,25*t}, [/mm] f(t)=g(t)*h(t), und nun mit der Produktregel ableiten.

Gruß v. Angela



Bezug
                
Bezug
Ableitung einer e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Di 28.04.2009
Autor: pucki

dann komm ich aber trotzdem nicht auf die Lösung:

u=a*t und u'=t
[mm] v=e^{-0,25*t} [/mm] und [mm] v'=-0,25*e^{-0,25*t} [/mm]

dann habe ich nur [mm] f'(t)=\bruch{-(a*t*e^{-0,25*t})+4(t*e^{-0,25*t})}{4} [/mm]
und meine andere Frage war, wie ich auf die 2. Ableitung komme, dass man da Produktregel benutzen muss, weiß ich auch.

lg pucki

Bezug
                        
Bezug
Ableitung einer e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Di 28.04.2009
Autor: angela.h.b.


> dann komm ich aber trotzdem nicht auf die Lösung:

Hallo,

das wundert mich nicht:

>
> u=a*t und u'=t

Die Ableitung stimmt nicht.
Du leitest doch nach t ab, a ist  eine Konstante.

Gruß v. Angela




>  [mm]v=e^{-0,25*t}[/mm] und [mm]v'=-0,25*e^{-0,25*t}[/mm]
>  
> dann habe ich nur
> [mm]f'(t)=\bruch{-(a*t*e^{-0,25*t})+4(t*e^{-0,25*t})}{4}[/mm]
>   und meine andere Frage war, wie ich auf die 2. Ableitung
> komme, dass man da Produktregel benutzen muss, weiß ich
> auch.
>  
> lg pucki


Bezug
                                
Bezug
Ableitung einer e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Di 28.04.2009
Autor: pucki

ja dann setz ich eben statt t a ein und komm trotzdem nicht auf die lösung.
Kannst du das vielleicht nicht einfach detailliert hinschreiben?

lg pucki

Bezug
                                        
Bezug
Ableitung einer e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Di 28.04.2009
Autor: angela.h.b.


> ja dann setz ich eben statt t a ein und komm trotzdem nicht
> auf die lösung.
> Kannst du das vielleicht nicht einfach detailliert
> hinschreiben?

Hallo,

ich meine, daß Du derjenige bist, der alles detailliert aufschreiben sollte...

Gemeinsame Faktoren ausgeklammert hast Du?

Gruß v. Angela



Bezug
                                                
Bezug
Ableitung einer e-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Di 28.04.2009
Autor: pucki

$ [mm] f'(t)=\bruch{-(a\cdot{}t\cdot{}e^{-0,25\cdot{}t})+4(a\cdot{}e^{-0,25\cdot{}t})}{4} [/mm] $

[mm] f'(t)=\bruch{a*e^{-0,25*t}(-1-t+4)}{4} [/mm]

Was ist das jetzt falsch? Stimmt nicht mit der Lösung überein.

lg pucki

Bezug
                                                        
Bezug
Ableitung einer e-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Di 28.04.2009
Autor: angela.h.b.


>
> [mm]f'(t)=\bruch{-(a\cdot{}t\cdot{}e^{-0,25\cdot{}t})+4(a\cdot{}e^{-0,25\cdot{}t})}{4}[/mm]
>  
> [mm]f'(t)=\bruch{a*e^{-0,25*t}(-1-t+4)}{4}[/mm]
>  
> Was ist das jetzt falsch? Stimmt nicht mit der Lösung
> überein.

Hallo,

wenn Du das a herausziehst, dann hast Du

[mm]f'(t)=\bruch{a*(-t\cdot{}e^{-0,25\cdot{}t}+4\cdot{}e^{-0,25\cdot{}t})}{4}[/mm],

und nun noch [mm] e^{-0,25\cdot{}t} [/mm] vorziehen.


Du hattest  irgendwie vergessen, daß [mm] -(ae^{-0,25\cdot{}t})=(-1)*a*e^{-0,25\cdot{}t}. [/mm]

Gruß v. Angela

>
> lg pucki


Bezug
                                                                
Bezug
Ableitung einer e-funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Di 28.04.2009
Autor: pucki

ja dann habe ich [mm] f'(t)=\bruch{a*e^{-0,25*t}(4-t)}{4} [/mm]

Danke für deine Hilfe!

lg pucki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de