www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung einer ln-Funktion.
Ableitung einer ln-Funktion. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer ln-Funktion.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 28.02.2010
Autor: Argentinien

Aufgabe
Bestimmen Sie die ersten drei Ableitungen.

Hi. Gegeben ist eine ln-Funktion, deren erste Ableitung ist bereits richtig abgeleiten habe. Bei der zweiten und dritten Ableitung habe ich dann allerdings eine Kleinigkeit anders, aber ich kann meinen Fehler nicht finden.

Die erste Ableitung ist wie folgt:
f'(x) = 8* [mm] \bruch{1-ln(x)}{x^2} [/mm]

Für die zweite Ableitung wendete ich schließlich die Q.-Regel an:
f''(x) = 8* [mm] \bruch{-\bruch{1}{x}*x^2 - 2x*(1-ln(x)) }{x^4} [/mm]

Zusammengefasst wäre das:
f''(x) = 8* [mm] \bruch{-3+2x(ln(x))}{x^3} [/mm]

Als Lösung wird allerdings jenes vorgegeben:
f''(x) = 8* [mm] \bruch{-3+2(ln(x))}{x^3} [/mm]

Ich habe also statt einer 2 'nen 2x. Finde meinen Fehler einfach nicht. :( Hoffe ihr könnt mir helfen.

        
Bezug
Ableitung einer ln-Funktion.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 So 28.02.2010
Autor: Tyskie84

Hallo,

zunächst wäre es sinnvoll wenn du die Funktion hier aufschreibst. Das einzige was ich jetzt machen könnte ist aus der ersten Ableitung die Ausgangsfunktion zu bestimmen aber dass heisst ja nicht dass ich die richtige finde wenn du falsch abgeleitet hast.

Ausgehend von deiner ersten Ableitung ist deine zweite Ableitung falsch. Richtig ist die Musterlösung.

Es ist:

[mm] \\f'(x)=-8\cdot\left(\bruch{1-ln(x)}{x^2}\right) [/mm]

Nun ist:

[mm] \\f''(x)=-8\cdot\left(\bruch{\bruch{-x^2}{x}-2x(1-ln(x)}{x^{4}}\right)=-8\cdot\left(\bruch{-\red{x}-2\red{x}(1-ln(x))}{\red{x^{4}}}\right)=-8\cdot\left(\bruch{-1-2(1-ln(x)}{x^{3}}\right)=MUSTERLOESUNG [/mm]

PS Einen Fehler können wir auch nur finden wenn wir deine komplette Rechnung sehen (siehe bei mir)!

[hut] Gruß

Bezug
                
Bezug
Ableitung einer ln-Funktion.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 So 28.02.2010
Autor: Argentinien

Dachte eig. dass die Ausgangsfunktion nicht von Bedeutung ist, da ich die erste Ableitung richtig hatte. :D Mir gings ja letztendlich nur um die zweite und dritte Ableitung, aber ich merks mir für das nächste Mal.

Aaah, habe falsch gekürzt, hatte nur ein x entfernt. Wunderbar. Ich bedanke mich. :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de