www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung eines Integrals
Ableitung eines Integrals < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung eines Integrals: Wie kann man folgendes Integra
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:49 Sa 13.12.2008
Autor: flowwsen

Hallo,
kann mir jemand sagen wie man folgendes Integral ableitet/ausrechnet?
[mm] \bruch{d}{dt}( \integral_{0}^{t}{r(t,x)*u(x) dx} [/mm] )
wobei r stetig differenzierbar (in beiden Komponenten) und u stetig sei. Ich stolper darüber, weil die Grenze veränderlich ist. Sonst könnte ich doch eigentlich die Ableitung einfach ins Integral ziehen. Und dann das Integral leicht ausrechnen. (einfache Anwendung des Hauptsatzes der I.)
Vielen dank im vorraus für die Hilfe!
Grüße flowwsen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Sa 13.12.2008
Autor: abakus


> Hallo,
>  kann mir jemand sagen wie man folgendes Integral
> ableitet/ausrechnet?
>  [mm]\bruch{d}{dt}( \integral_{0}^{t}{r(t,x)*u(x) dx}[/mm] )
>  wobei r stetig differenzierbar (in beiden Komponenten) und
> u stetig sei. Ich stolper darüber, weil die Grenze
> veränderlich ist. Sonst könnte ich doch eigentlich die
> Ableitung einfach ins Integral ziehen. Und dann das
> Integral leicht ausrechnen. (einfache Anwendung des
> Hauptsatzes der I.)
>  Vielen dank im vorraus für die Hilfe!
>  Grüße flowwsen
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Hallo,
bekannterweise (?) ist  [mm] \integral_{a}^{t}{f(x) dx} [/mm] eine Stammfunktion von f(t). (Bekannter ist dieser Satz mit vertauschten Variablen x und t). Also ist  [mm] \integral_{0}^{t}{r(t,x)*u(x) dx} [/mm] eine Stammfunktion von f(t)=r(t,x)*u(x).
Sehe ich das falsch, oder kann man x bzw. u(x) wie eine Konstante behandeln, weil wir ja nach t ableiten?
Gruß Abakus


Bezug
                
Bezug
Ableitung eines Integrals: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:05 Sa 13.12.2008
Autor: flowwsen

Hallo,
zunächst vielen Dank für deine schnelle Antwort.
f(t)=r(t,x)*u(x). Kann eigentlich keine Stammfunktion zu dem Integral sein, da diese nur von t abhängen dürfte.
Warum sollte [mm] \integral_{a}^{t}{f(x) dx} [/mm] eine Stammfunktion von f(t) sein? Gilt nach dem Hauptsatz der Integralrechnung nicht [mm] \integral_{t}^{a}{f(x) dx} [/mm] = F(t)-F(a)? Das wäre doch nur eine Stammfunktion wenn F(a) zufällig 0 wäre.
Hat vielleicht jemand noch eine andere Idee zur obigen Frage?
Grüße Florian

Bezug
                        
Bezug
Ableitung eines Integrals: Stammfunktion
Status: (Antwort) fertig Status 
Datum: 17:10 Sa 13.12.2008
Autor: Loddar

Hallo Florian,

[willkommenmr] !!


Eine Stammfunktion von $f(x)_$ ist eine Funktion $F(x)_$ , deren Ableitung wiederum $f(x)_$ ergibt.
Für ein konstantes $a_$ bzw. damit auch $F(a)_$ ist diese Eigenschaft genau gegeben, da [mm] $\left[ \ F(a) \ \right]' [/mm] \ = \ 0$ .


Gruß
Loddar


Bezug
                        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Sa 13.12.2008
Autor: MathePower

Hallo flowwsen,

> Hallo,
>  zunächst vielen Dank für deine schnelle Antwort.
>  f(t)=r(t,x)*u(x). Kann eigentlich keine Stammfunktion zu
> dem Integral sein, da diese nur von t abhängen dürfte.
>  Warum sollte [mm]\integral_{a}^{t}{f(x) dx}[/mm] eine Stammfunktion
> von f(t) sein? Gilt nach dem Hauptsatz der Integralrechnung
> nicht [mm]\integral_{t}^{a}{f(x) dx}[/mm] = F(t)-F(a)? Das wäre doch
> nur eine Stammfunktion wenn F(a) zufällig 0 wäre.
>  Hat vielleicht jemand noch eine andere Idee zur obigen
> Frage?


Betrachte hier

[mm]F\left(t,x\right):=\integral_{}^{}{f\left(t,x\right) \ dx}=\integral_{}^{}{r\left(t,x\right) u\left(x\right) \ dx}[/mm]

Demnach ist

[mm]\integral_{0}^{t}{r\left(t,x\right) u\left(x\right) \ dx}=\left F\left(t,x\right)\right|_{x=0}^{x=t}\right[/mm]

So jetzt leiten wir [mm]F\left(t,x\right)[/mm] nach der Kettenregel ab,
da x auch von t abhängig ist:

[mm]\left\bruch{\partial F}{\partial t}+\bruch{\partial F}{\partial x}\bruch{dx}{dt}\right|_{x=0}^{x=t}[/mm]


>  Grüße Florian


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de