www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Ableitung lineare Abbildung?
Ableitung lineare Abbildung? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung lineare Abbildung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:33 So 30.11.2008
Autor: christianw

Aufgabe
Die formale Ableitung eines Polynoms P(X) = [mm] \summe_{n\ge0}\lambda_{n}X^n [/mm] ist
definiert als P'(X) = [mm] \summe_{n\ge1}n\lambda_{n}X^{n-1} [/mm] . Sei nun [mm] V_{n} \subset [/mm] K[X] der Untervektorraum
aller Polynome vom Grad [mm] \le3 [/mm] über einem Körper K. Wir betrachten
die Abbildung

f : [mm] V_3 \to V_4, [/mm] P(X) [mm] \mapsto -P'(X^2 [/mm] − 1).

Verifizieren Sie, daß die Abbildung f linear ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ausgeschrieben habe ich die Ableitungssumme für n = 1 bis 3 als:

[mm] -1\lambda_1(x^2-1)^0 [/mm] + [mm] (-2)\lambda_2(x^2-1)^1 [/mm] + [mm] (-3)\lambda_3(x^2-1)^2 [/mm]

Wenn ich jetzt auf Homogenität überprüfe, ist mir unklar, wie dies eine lineare Abbildung sein kann.

a*f(x) = f(a*x)

=> [mm] a(-1\lambda_1(x^2-1)^0 [/mm] + ...) =  [mm] -1\lambda_1(a(x^2-1))^0 [/mm] + ...
<=> [mm] -1\lambda_1a [/mm] + ... = [mm] -1\lambda_1 [/mm] + ...

Spontan würde ich sagen, dass diese Abb. nicht linear sein kann, da mir ja auf der rechten Seite in jedem Fall das a fehlt. Wo liegt der Fehler?

        
Bezug
Ableitung lineare Abbildung?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 So 30.11.2008
Autor: angela.h.b.


> Die formale Ableitung eines Polynoms P(X) =
> [mm]\summe_{n\ge0}\lambda_{n}X^n[/mm] ist
>  definiert als P'(X) = [mm]\summe_{n\ge1}n\lambda_{n}X^{n-1}[/mm] .
> Sei nun [mm]V_{n} \subset[/mm] K[X] der Untervektorraum
>  aller Polynome vom Grad [mm]\le3[/mm] über einem Körper K. Wir
> betrachten
>  die Abbildung
>  
> f : [mm]V_3 \to V_4,[/mm] P(X) [mm]\mapsto -P'(X^2[/mm] − 1).
>  
> Verifizieren Sie, daß die Abbildung f linear ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Ausgeschrieben habe ich die Ableitungssumme für n = 1 bis 3
> als:
>  
> [mm]-1\lambda_1(x^2-1)^0[/mm] + [mm](-2)\lambda_2(x^2-1)^1[/mm] +
> [mm](-3)\lambda_3(x^2-1)^2[/mm]
>  
> Wenn ich jetzt auf Homogenität überprüfe, ist mir
> a*f(x) = f(a*x)unklar,
> wie dies eine lineare Abbildung sein kann.
>  
> a*f(x) = f(a*x)

Hallo,

[willkommenmr].

Mach Dir nochmal klar, welches die Objekte sind, auf die die Abbildung f wirkt: es sind Polynome.

Du hast für die Linearität also zu prüfen, ob  f(P(X)+Q(X))=f(P(X))+f(Q(X))   und f(aP(X))=af(P(X)) richtig ist.

Gruß v. Angela




Bezug
                
Bezug
Ableitung lineare Abbildung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 So 30.11.2008
Autor: christianw

Besten Dank für die Antwort. Ich werde mich jetzt noch mal damit auseinandersetzen. Muss zugeben, dass mich die Abbildungsvorschrift verwirrt hat, aber ich denke, dass mir der Tip hilft. Zumindest ist es intuitiv einleuchtend, dass es keinen Unterschied macht, ob das Ursprungspolynom zuerst oder die Summanden des Ableitungspolynoms später multipliziert werden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de