www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung log für Dichtefkt.
Ableitung log für Dichtefkt. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung log für Dichtefkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Di 20.09.2011
Autor: el_grecco

Aufgabe
Gegeben: [mm] $F(x)=\log(ax+b),0\le [/mm] x [mm] \le \exp(1).$ [/mm]

Leiten Sie [mm] $F(x)=\log\left( \bruch{e-1}{e}x+1 \right)$ [/mm] ab, um die zugehörige Dichtefunktion zu ermitteln.

Hallo,

bei dieser Rechnung handelt es sich um eine Teilaufgabe aus "Stochastik und Statistik". Nachdem für Logarithmen normalerweise [mm] $(\log_b [/mm] x)' = [mm] \frac 1{x\ln b}$ [/mm] gilt, sehe ich hier leider nicht, warum im Zähler a bzw. [mm] $\bruch{e-1}{e}$ [/mm] steht?


Lösung:

[mm] $f(x)=F'(x)=\bruch{a}{ax+b}=\bruch{\bruch{e-1}{e}}{\bruch{e-1}{e}x+1}=\bruch{e-1}{(e-1)x+e}$ [/mm]

Weiß vielleicht jemand, was hier gemacht wurde?

Vielen Dank!

Gruß
el_grecco


        
Bezug
Ableitung log für Dichtefkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 20.09.2011
Autor: fred97


> Gegeben: [mm]F(x)=\log(ax+b),0\le x \le \exp(1).[/mm]
>  
> Leiten Sie [mm]F(x)=\log\left( \bruch{e-1}{e}x+1 \right)[/mm] ab, um
> die zugehörige Dichtefunktion zu ermitteln.
>  Hallo,
>  
> bei dieser Rechnung handelt es sich um eine Teilaufgabe aus
> "Stochastik und Statistik". Nachdem für Logarithmen
> normalerweise [mm](\log_b x)' = \frac 1{x\ln b}[/mm] gilt, sehe ich
> hier leider nicht, warum im Zähler a bzw. [mm]\bruch{e-1}{e}[/mm]
> steht?
>  
>
> Lösung:
>  
> [mm]f(x)=F'(x)=\bruch{a}{ax+b}=\bruch{\bruch{e-1}{e}}{\bruch{e-1}{e}x+1}=\bruch{e-1}{(e-1)x+e}[/mm]
>  
> Weiß vielleicht jemand, was hier gemacht wurde?

Hallo Grieche,

schön , dass ich Dir mal wieder helfen darf.


Es ist F(x)=log(g(x)) mit g(x)=ax+1. Nach der Kettenregel gilt dann:

             [mm] $F'(x)=\bruch{1}{g(x)}*g'(x)$ [/mm]

und es ist g'(x)=a.

Machst Du jetzt "stirnklatsch" ?

Gruß FRED

>  
> Vielen Dank!
>  
> Gruß
>  el_grecco
>  


Bezug
                
Bezug
Ableitung log für Dichtefkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 20.09.2011
Autor: el_grecco

Hallo Fred,

> Hallo Grieche,
>  
> schön , dass ich Dir mal wieder helfen darf.

manchmal bedauere ich es, dass wir Informatiker kein Analysis II/III/IV haben! ;-)

> Es ist F(x)=log(g(x)) mit g(x)=ax+1. Nach der Kettenregel
> gilt dann:
>  
> [mm]F'(x)=\bruch{1}{g(x)}*g'(x)[/mm]
>  
> und es ist g'(x)=a.
>  
> Machst Du jetzt "stirnklatsch" ?

Allerdings! Es soll keine Ausrede sein, aber ich war so in den eigentlichen StochStat-Teil vertieft, dass ich hier leider den totalen Aussetzer hatte...

> Gruß FRED

Vielen Dank für die rasche und gute Hilfe!

Gruß
el_grecco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de