www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung multivariat
Ableitung multivariat < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung multivariat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Mo 02.10.2006
Autor: Peter_Pan

Hallo Zusammen.

geg.  h(t)= [mm] g(t,t^2) [/mm] mit [mm] g(x,y)=x-y^2 [/mm]

ges.: h'(t)

Könnt Ihr mir in Worten erklären, wie h(t), [mm] g(t,t^2) [/mm] und g(x,y) zusammenhängen? Oder fehlt evtl. etwas Wichtiges in der Aufgabenstellung?

Wie würdet Ihr h'(t) mit der Kettenregel ermitteln?


Ich wüßte garnicht wo ich hier anfangen muß bei der Anwendung der Ketternregel für multivariate Fkten.

Danke!
Lieben Gruß,


Peter.

        
Bezug
Ableitung multivariat: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Di 03.10.2006
Autor: ullim

Hallo Peter,

setze doch einfach t für x und [mm] t^2 [/mm] für y in [mm] g(x,y)=x-y^2 [/mm] ein. Dann erhälst Du eine Funktion, die nur von t abhängt und die man leicht differenzieren kann.

Also [mm] h(t)=t-t^4 [/mm]

mfg ullim

Bezug
                
Bezug
Ableitung multivariat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:46 Di 03.10.2006
Autor: Peter_Pan

Huhu ullim.

1000 Dank.
Habe eine Lsg. dazu in der steht:
h'(t) = [mm] (\partial g/\partial x)(t,t^2)*(\partial g/\partial y)(t,t^2)*(2*t)= [/mm]
       = [mm] 1-4*t^3 [/mm]

Verstehe nur noch nicht woher der Faktor (2t) in diesem Ansatz stammt.
Deine Lsg. finde ich sympathischer.
Weißt Du/Ihr woher der Faktor kommt?

Danke für die Unterstützung nochmal, Ullim.


Ahoi, Peter.

Bezug
                        
Bezug
Ableitung multivariat: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Di 03.10.2006
Autor: Leopold_Gast

Offenbar solltest du hier [mm](g \circ h)(t)[/mm] nach der mehrdimensionalen Kettenregel ableiten. Formal sieht das genau so aus wie eindimensional:

[mm](g \circ h)'(t) = g' \left( h(t) \right) \cdot h'(t)[/mm]

Hierbei sind die Faktoren Matrizen, der Malpunkt gibt das Matrizenprodukt an. Die Zeilen der Matrizen bestehen aus den partiellen Ableitungen der Komponentenfunktionen.

[mm]g[/mm] hat nur eine Komponentenfunktion. Daher nur eine Zeile mit den partiellen Ableitungen:

[mm]g'(x,y) = \begin{pmatrix} \frac{\partial{g}}{\partial{x}} & \frac{\partial{g}}{\partial{y}} \end{pmatrix} = \begin{pmatrix} 1 & -2y \end{pmatrix}[/mm]

Und jetzt [mm]h[/mm] einsetzen:

[mm]g' \left( h(t) \right) = g' \left( t \, , \, t^2 \right) = \begin{pmatrix} 1 & -2t^2 \end{pmatrix}[/mm]

[mm]h[/mm] hat zwei Komponentenfunktion. Daher zwei Zeilen. Dafür sind hier die partiellen Ableitungen besonders einfach. Es gibt ja nur eine Variable [mm]t[/mm]:

[mm]h'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}[/mm]

Jetzt die Matrizen miteinander multiplizieren:

[mm](g \circ h)'(t) = g' \left( h(t) \right) \cdot h'(t) = \begin{pmatrix} 1 & -2t^2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2t \end{pmatrix}[/mm]

In diesem Spezialfall "Zeile mal Spalte" zeigt sich das Matrizenprodukt als das Standardskalarprodukt.

Die von dir angegebene Formel ist ziemlich vermurkst. Da hast du etwas falsch verstanden oder abgeschrieben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de