www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung von R^3-->R^2
Ableitung von R^3-->R^2 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von R^3-->R^2: Korrektur, Hilfe
Status: (Frage) beantwortet Status 
Datum: 17:32 Di 12.10.2010
Autor: Leipziger

Aufgabe
F: [mm] \IR^3 [/mm] --> [mm] \IR^2 [/mm] mit

F(x,y,z) := [mm] (x^2*sin(y), z^2-x^2) [/mm]

(a) Ableitung und Rang berechnen
(b) In welchen Punkten des [mm] \IR^3 [/mm] ist der Satz über implizite Funktionen anwendbar?
(c) Geben Sie in einer Umgebung des Punktes (1,0,1) explizit eine Paramtrisierung von [mm] F^{-1}(0,0) [/mm] an


(a)

f(x,y,z) = [mm] \pmat{ 2x sin(y) & x^2 cos(y) & 0 \\ -2x & 0 & 2z }, [/mm] damit ist rang f=2

(b)

für [mm] x\not=z [/mm] bleibt der Rang der Matrix bei 2 und man kann somit den Satz für implizite Funktionen anwenden, richtig?

(c)

leider weiß ich nicht, was ich da tun soll, kann mir jemand auf die sprünge helfen?

gruß leipziger

        
Bezug
Ableitung von R^3-->R^2: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mi 13.10.2010
Autor: fred97


> F: [mm]\IR^3[/mm] --> [mm]\IR^2[/mm] mit
>  
> F(x,y,z) := [mm](x^2*sin(y), z^2-x^2)[/mm]
>  
> (a) Ableitung und Rang berechnen
>  (b) In welchen Punkten des [mm]\IR^3[/mm] ist der Satz über
> implizite Funktionen anwendbar?
>  (c) Geben Sie in einer Umgebung des Punktes (1,0,1)
> explizit eine Paramtrisierung von [mm]F^{-1}(0,0)[/mm] an
>  
> (a)
>  
> f(x,y,z) = [mm]\pmat{ 2x sin(y) & x^2 cos(y) & 0 \\ -2x & 0 & 2z },[/mm]
> damit ist rang f=2

Na, na, na. Schau Dir mal den Fall x= 0 an ! Und dann x=z=0.


>  
> (b)
>  
> für [mm]x\not=z[/mm] bleibt der Rang der Matrix bei 2 und man kann
> somit den Satz für implizite Funktionen anwenden,
> richtig?

Nein. Nimm mal x=0 und z=1


>  
> (c)
>  
> leider weiß ich nicht, was ich da tun soll, kann mir
> jemand auf die sprünge helfen?

Mit $ [mm] F^{-1}(0,0) [/mm] $ ist folgendes gemeint:

        $ [mm] F^{-1}(0,0) [/mm] = [mm] \{(x,y,z) \in \IR^3: F(x,y,z)= (0,0)\}$ [/mm]



FREd




>  
> gruß leipziger


Bezug
                
Bezug
Ableitung von R^3-->R^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mi 13.10.2010
Autor: Leipziger

Ja, stimmt Fallunterscheidung wäre noch wichtig.

(a)
[mm] x\not=0, x\not=z [/mm] :
[mm] f(x,y,z)=\pmat{ 2x sin(y) & x^2 cos(y) & 0 \\ -2x & 0 & 2z } [/mm] ==> rang f = 2

x=0:
[mm] f(0,y,z)=\pmat{ 0 & 0 & 0 \\ 0 & 0 & 2z } [/mm] ==> rang f = 1 (für [mm] x=z\not=0 [/mm] gilt das gleiche)

x=z=0:
[mm] f(0,y,0)=\pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm] ==> rang f = 0

(b) somit muss [mm] x\not=0 [/mm] und [mm] x\not=z [/mm] sein, dann ist der Satz über implizite Funktionen anwendbar.

Gruß

Bezug
                        
Bezug
Ableitung von R^3-->R^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Do 14.10.2010
Autor: Leipziger

Ist meine Lösung für (a) und (b) richtig?

Gruß

Bezug
                        
Bezug
Ableitung von R^3-->R^2: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Fr 15.10.2010
Autor: meili

Hallo Leipziger,

> Ja, stimmt Fallunterscheidung wäre noch wichtig.
>  
> (a)
>  [mm]x\not=0, x\not=z[/mm] :
>  [mm]f(x,y,z)=\pmat{ 2x sin(y) & x^2 cos(y) & 0 \\ -2x & 0 & 2z }[/mm]
> ==> rang f = 2

[ok]

>  
> x=0:
>  [mm]f(0,y,z)=\pmat{ 0 & 0 & 0 \\ 0 & 0 & 2z }[/mm] ==> rang f = 1

> (für [mm]x=z\not=0[/mm] gilt das gleiche)

[ok]

>  
> x=z=0:
>  [mm]f(0,y,0)=\pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm] ==> rang f = 0

[ok]

Welcher Rang  für [mm]x=z\not=0[/mm] gilt, ([mm]f(x,y,x)=\pmat{ 2x sin(y) & x^2 cos(y) & 0 \\ -2x & 0 & 2x }[/mm]), sehe ich hier noch nicht.

>  
> (b) somit muss [mm]x\not=0[/mm] und [mm]x\not=z[/mm] sein, dann ist der Satz
> über implizite Funktionen anwendbar.

[ok]

>  
> Gruß

Gruß meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de