www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung von ln-funktionen
Ableitung von ln-funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von ln-funktionen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:02 Do 08.11.2007
Autor: kleene73

Aufgabe
ableitung der Funktion (e*ln(x))²:x

Hallo!
Ich habbe immer noch Probleme mit der Ableitung, besodners wenn man die Kettenregel mit innerer und äußerer ableitung anwenden muss. Daher die frage, wie man
[mm]\bruch{(e*ln(x))^2}{x} [/mm]
ableitet...
Für Hilfe wäre ich sehr dankbar..;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung von ln-funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Do 08.11.2007
Autor: Bastiane

Hallo kleene73!

> ableitung der Funktion (e*ln(x))²:x
>  Hallo!
>  Ich habbe immer noch Probleme mit der Ableitung, besodners
> wenn man die Kettenregel mit innerer und äußerer ableitung
> anwenden muss. Daher die frage, wie man
> [mm]\bruch{(e*ln(x))^2}{x}[/mm]
>  ableitet...

Am besten hilft es, wenn du es selber versuchst...

Zuerst benutzt du die MBQuotientenregel:

[mm] \big(\frac{\red{(e*\ln(x))^2}}{\green{x}}\big)'=\frac{\red{((e*\ln(x))^2)'}*\green{x}-\red{(e*\ln(x))^2}*\green{(x)'}}{\green{x^2}} [/mm]

Die Ableitung von x wirst du wohl so schaffen, die von [mm] (e*\ln(x))^2 [/mm] kannst du mit der MBKettenregel als Nebenrechnung einzeln machen und danach dort einsetzen. Probier's doch mal.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ableitung von ln-funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Do 08.11.2007
Autor: kleene73

Also die Kettenregel besteht aus innerer und äußerer ableitung..
die ableitung von [mm]f(x)=(e*ln(x))² [/mm]
ist also
f(x)=e*ln(x)  [mm]f'(x)= \bruch {1} {x} [/mm]als innere ableitung
und 2eln(x) ist sozusagen die äußere ableitung..

zusammen wäre f'(x) also [mm]\bruch {2eln(x)} {x}[/mm] ??

und zusammen, also die gesamte funktion abgeleitet wäre dann [mm]\bruch {2eln(x)} {x²} [/mm]

Bezug
                        
Bezug
Ableitung von ln-funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Do 08.11.2007
Autor: Steffi21

Hallo,

im Zähler steht die Funktion u

[mm] u=(e*ln(x))^{2} [/mm]

[mm] u'=2*e*ln(x)*e*\bruch{1}{x}=\bruch{2e^{2}ln(x)}{x} [/mm] das hattest du fast


im Nenner steht Funktion v

v=x

v'=1


jetzt schau dir die Quotientenregel an, arbeite diese Schritt für Schritt ab, besonders den Zähler,

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de