www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Ableitung von trig. Funktionen
Ableitung von trig. Funktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von trig. Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:54 Mo 17.12.2007
Autor: mai

Hallo Ihr Lieben,

ist die Ableitung von f(x) = [mm] \bruch{sin(3*x)}{tan(3*x)} [/mm]
gleich der Ableitung von cos(3*x) (Vgl. : -3*sin(3*x))?

cos(x) ist schließlich auch gleich [mm] \bruch{sin(x)}{tan(x)}? [/mm]

Vielen Dank und liebe Grüße! :-)

        
Bezug
Ableitung von trig. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mo 17.12.2007
Autor: angela.h.b.


> ist die Ableitung von f(x) = [mm]\bruch{sin(3*x)}{tan(3*x)}[/mm]
>  gleich der Ableitung von cos(3*x) (Vgl. : -3*sin(3*x))?
>  
> cos(x) ist schließlich auch gleich [mm]\bruch{sin(x)}{tan(x)}?[/mm]

Hallo,

hast Du versucht, Dir die Frage ableitend selbst zu beantworten?

Was hast Du herausgefunden?

Gruß v. Angela



Bezug
                
Bezug
Ableitung von trig. Funktionen: Rückmeldung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 Mo 17.12.2007
Autor: mai

Ja, ich habe die Ableitung gebildet (Ketten- und Quotientenregel),
aber ich weiß nicht, wie ich da was kürzen/zusammenfassen soll,
um auf das Ergebnis zu kommen. :-(

Bezug
                        
Bezug
Ableitung von trig. Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 17.12.2007
Autor: angela.h.b.


> Ja, ich habe die Ableitung gebildet (Ketten- und
> Quotientenregel),
>  aber ich weiß nicht, wie ich da was kürzen/zusammenfassen
> soll,
>  um auf das Ergebnis zu kommen. :-(

Hallo,

es könnte Dir bestimmt jemand dabei helfen - dazu müßten wir aber sehen, was Du gerechnet hast.

Gruß v. Angela

Bezug
                                
Bezug
Ableitung von trig. Funktionen: Rückmeldung
Status: (Frage) beantwortet Status 
Datum: 10:29 Mo 17.12.2007
Autor: mai

Die Ableitung von [mm] \bruch{sin(3x)}{tan(3x)} [/mm]  lautet:

[mm] \bruch{-3*sin(3x)*tan(3x)-(3+3*tan^{2}(3x))*sin(3x)}{(tan(3x))^{2}} [/mm] -

die Frage ist, ob das gleichbedeutend mit -3*sin(3x) ist.

Bezug
                                        
Bezug
Ableitung von trig. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mo 17.12.2007
Autor: angela.h.b.


> Die Ableitung von [mm]\bruch{sin(3x)}{tan(3x)}[/mm]  lautet:
>  
> [mm]\bruch{-3*sin(3x)*tan(3x)-(3+3*tan^{2}(3x))*sin(3x)}{(tan(3x))^{2}}[/mm]
> -
>  
> die Frage ist, ob das gleichbedeutend mit -3*sin(3x) ist.

Hallo,

Du hast am Anfang einen Fehler gemacht, die Ableitung v. sin(3x) ist doch +3cos(3x),

also muß es heißen (Quotientenregel)

[mm] \bruch{3*cos(3x)*tan(3x)-(3+3*tan^{2}(3x))*sin(3x)}{(tan(3x))^{2}}, [/mm]

und das kannst Du, wenn Du tan=sin/cos und [mm] 1=sin^2+cos^2 [/mm] verwendest, tatsächlich umformen zu -3*sin(3x).

Das ist ja auch kein Wunder, denn wenn die Funktionen gleich sind, ist natürlich auch die Ableitung gleich.

Gruß v. Angela



[mm] [...=\bruch{3*cos(3x)}{tan(3x)} [/mm] - [mm] \bruch{(3+3*tan^{2}(3x))*sin(3x)}{(tan(3x))^{2}} [/mm]

[mm] =\bruch{3*cos(3x)}{tan(3x)}-\bruch{\bruch{3}{cos^2(3x)})*sin(3x)}{\bruch{sin^2(3x)}{cos^2(3x)}} [/mm]

[mm] =\bruch{3*cos(3x)}{tan(3x)}-\bruch{3sin(3x)}{sin^2(3x)} [/mm]

[mm] =\bruch{3*cos^2(3x)}{sin(3x)}-\bruch{3}{sin(3x)} [/mm]

[mm] =3\bruch{cos^2(3x)-1}{sin(3x)} [/mm]

=-3sin(3x)]


Bezug
                                                
Bezug
Ableitung von trig. Funktionen: Rückmeldung+Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 17.12.2007
Autor: mai

Ah! Vielen lieben Dank! Hatte mich vertippt^^,
aber das mit den Umformungen, da bin
ich nicht draufgekommen, dankeschön! :-)

Nur ein Problem habe ich noch, undzwar dieser Schritt
(die Umformung des Zählers ist mir nicht ganz klar):


$ [mm] [...=\bruch{3\cdot{}cos(3x)}{tan(3x)} [/mm] $ - $ [mm] \bruch{(3+3\cdot{}tan^{2}(3x))\cdot{}sin(3x)}{(tan(3x))^{2}} [/mm] $

$ [mm] =\bruch{3\cdot{}cos(3x)}{tan(3x)}-\bruch{\bruch{3}{cos^2(3x)})\cdot{}sin(3x)}{\bruch{sin^2(3x)}{cos^2(3x)}} [/mm] $

Bezug
                                                        
Bezug
Ableitung von trig. Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mo 17.12.2007
Autor: angela.h.b.


> Nur ein Problem habe ich noch, undzwar dieser Schritt
>  (die Umformung des Zählers ist mir nicht ganz klar):
>  
>
> [mm][...=\bruch{3\cdot{}cos(3x)}{tan(3x)}[/mm] -
> [mm]\bruch{(3+3\cdot{}tan^{2}(3x))\cdot{}sin(3x)}{(tan(3x))^{2}}[/mm]
>  
> [mm]=\bruch{3\cdot{}cos(3x)}{tan(3x)}-\bruch{\bruch{3}{cos^2(3x)})\cdot{}sin(3x)}{\bruch{sin^2(3x)}{cos^2(3x)}}[/mm]


Hallo,

es ist

[mm] 3+3\cdot{}tan^{2}(3x) [/mm]

[mm] =3*(1+tan^2(3x)) [/mm]

[mm] =3*(1+\bruch{sin^2(3x)}{cos^2(3x)} [/mm]

[mm] =3*(\bruch{cos^2(3x)+sin^2(3x)}{cos^2(3x)} [/mm]

[mm] =3*(\bruch{1}{cos^2(3x)}. [/mm]

Man verwendet hier [mm] 1=\sin^2y+\cos^2y [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de