www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Fr 12.01.2007
Autor: fred_

Aufgabe
a) Diskutiere die Funktionskurve f(x) = - 1/8 * [mm] x^4 [/mm] + 1/2 * x³
b) beweise alle bei dieser Kurvendiskussion verwendeten Ableitungsregeln.

Meine Frage ist jetzt folgende, wie leit ich das richtig ab? ich habs mal so gmacht:

f'(x) = 1/8 * x³ + 1/2 * x²
f''(x) = 1/8 *x² + 1/2 * x

Anmerkung: das x steht neben den Bruch und nicht oben oder unten, kann man schwer so schreiben!
wenn ich jetzt f(x) null setze kommt Nst1 (4/0) und Nst2 (0/0).. da scheint ja noch alles normal..

bei den Extremwerten jedoch also f'(x) = 0 kommt als x wert -4 und das is dann er y wert -64 und das glaub ich kann ned sein... darum denk ich das ich falsch abgeleitet hab, bin mir aber ned sicher....

und kann mir vl wer einen kleinen tipp geben, was b soll?


btw: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

grüße, freddy

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Fr 12.01.2007
Autor: DesterX

Hallo!
> a) Diskutiere die Funktionskurve f(x) = - 1/8 * [mm]x^4[/mm] + 1/2 *
> x³
>  b) beweise alle bei dieser Kurvendiskussion verwendeten
> Ableitungsregeln.
>  Meine Frage ist jetzt folgende, wie leit ich das richtig
> ab? ich habs mal so gmacht:
>  
> f'(x) = 1/8 * x³ + 1/2 * x²
>  f''(x) = 1/8 *x² + 1/2 * x
>  

[notok]
Wenn du eine Funktion der Form: [mm] f(x)=cx^n [/mm] hast, dann gilt: [mm] f'(x)=ncx^{n-1} [/mm]
Zum Beispiel: [mm] f(x)=2x^2, [/mm] dann ist [mm] f'(x)=2*2*x^1 [/mm] = 4x
Summanden lassen sich seperat ableiten, denn es gilt: (f+g)'=f'+g'.
Aber das hast du im Prinzip oben bereits richtig gemacht.
Hier gibt's weitere Infos: MBAbleitung

Dann weiter viel Erfolg wünscht
Dester


Bezug
        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Fr 12.01.2007
Autor: Aaron

Wie DesterX schon sagte, musst du die Ableitungsregeln beachten.
Daraus folgt dann,

f'(x) = [mm] -\bruch{1}{8} [/mm] * 4 [mm] x^{4-1} [/mm] + [mm] \bruch{1}{2} [/mm] * 3 [mm] x^{3-1} [/mm]

f'(x) = [mm] -\bruch{1}{2} x^{3} [/mm] + [mm] -\bruch{3}{2} x^{2} [/mm]

f''(x) = [mm] -\bruch{1}{2} [/mm] * 3 [mm] x^{3-1} [/mm] + [mm] \bruch{3}{2} [/mm] * 2 [mm] x^{2-1} [/mm]

f''(x) = [mm] -\bruch{3}{2} x^{2} [/mm] + 3x

Durch die falschen Ableitungen bist du auf die falschen Extremstellen gekommen.

Die Nullstellenbestimmung ist allerdings richtig! Sowas kannst du doch sonst auch mit deinem Taschenrechner überprüfen...



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de