www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mo 24.03.2008
Autor: Amy1988

Hallo!

Ich habe eben mit dem Kapitel Exponentialfunktionen angefangen und wollte dazu eine Kurvendiskussion durchführen.
Mein Problem fing aber schon bei den Ableitungen an...
Vielleicht kann mal jemand drüberschauen und mir ein paar Tipps geben?!

Es geht um diese Aufgabe
f(x) = [mm] x^2*e^{-x} [/mm]

Erst wollte ich das umgeschrieben mit der Qutientenregel lösen, aber das habe ich dann doch lieber gelassen :-)

f'(x) = [mm] 2x*e^{-x} [/mm] + [mm] x^2*e^{-x} [/mm]
f'(x) = [mm] x(2+x)e^{-x} [/mm]

f''(x) = [mm] (2x+x)e^{-x} [/mm] + [mm] (x(2+x)*1)e^{-x} [/mm]
f''(x) = [mm] e^{-x}(x^2+3x+2) [/mm]

Soweit erstmal...
Ist das richtig so oder habe ich da falsche Regeln angewendet?

LG, Amy

        
Bezug
Ableitungen: innere Ableitung
Status: (Antwort) fertig Status 
Datum: 13:12 Mo 24.03.2008
Autor: Loddar

Hallo Amy!


Die Ableitungen lassen sich tatsächlich am schnellsten über die MBProduktregel ermitteln. Allerdings vergisst Du hier bei dem Term [mm] $e^{-x}$ [/mm] die innere Ableitung gemäß MBKettenregel.

Es gilt nämlich:  [mm] $\left( \ e^{-x} \ \right)' [/mm] \ = \ [mm] e^{-x}*(-x)' [/mm] \ = \ [mm] e^{-x}*(\red{-1}) [/mm] \ = \ [mm] -e^{-x}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Mo 24.03.2008
Autor: Amy1988

Vielen Dank...das wusste ich garnichtmehr :-)

Okay, also lauten die Ableitungen dann so:

f'(x) = [mm] 2x*e^{-x} [/mm] + [mm] x^2*e^{-x}*(-1) [/mm]
f'(x) = [mm] e^{-x}(2-x)x [/mm]

f''(x) = [mm] e^{-x}*(-1)*(2-x)x [/mm] + [mm] (2-x)*e^{-x} [/mm]
f''(x) = [mm] e^{-x}(x^2-3x+2) [/mm]

f'''(x) = [mm] e^{-x}*(-1)*(x^2+3x+2) [/mm] + [mm] e^{-x}*(2x+3) [/mm]
f'''(x) = [mm] e^{-x}(-x^2+5x-5) [/mm]

???!!!
LG, Amy

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Mo 24.03.2008
Autor: steppenhahn

Die erste Ableitung hast du richtig berechnet.

Bei der zweiten hast du allerdings die Produktregel nur einmal angewandt; du hast aber eigentlich 3 Faktoren:

[mm]\left[e^{-x}*(x-2)*x\right]' = \underbrace{(-1)*e^{-x}*(x-2)*x}_{DerTeilIstRichtig} + e^{-x}*[\underbrace{(x-2)*x}_{DasIstAuchEinProdukt!}]'[/mm]

Und bei dem zweiten Teil hast du nicht mehr die Produktregel angewandt. (Du musst die Produktregel hier praktisch zweimal anwenden).
Ich würde dir empfehlen, dem Teil [mm](x-2)*x[/mm] auszumultiplizieren, das lässt sich dann leichter berechnen:

[mm](x-2)*x = x^{2}-2x[/mm]

Denn für's Ableiten ist es meistens besser, Summen zu haben anstatt Produkte.

Die 3. Ableitung braucht dann entsprechend auch eine Neuberechnung :-)

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mo 24.03.2008
Autor: Amy1988

Hallo Stefan!

Ja, das klingt logisch!
Also ich versuche es nochmal...Versuch Nummer 3 jetzt also :-)
f''(x) = [mm] e^{-x}*(-1)*(-x^2+2x) [/mm] + [mm] e^{-x}*(-2x+2) [/mm]
f''(x) = [mm] e^{-x}*(x^2-4x+2) [/mm]

f'''(x) = [mm] e^{-x}*(-1)*(x^2-4x+2) [/mm] + [mm] e^{-x}*(2x-4) [/mm]
f'''(x) = [mm] e^{-x}*(-x^2+6x-6) [/mm]

Stimmt es jetzt? :-)

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 24.03.2008
Autor: leduart

Hallo
Ja, alle 3 Ableitungen richtig
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de