www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:50 So 17.10.2010
Autor: Phoenix22

Aufgabe
Berechnen Sie f'(x) und f''(x).

a) f(x)= [mm] (6-5x)^3 [/mm]
b) f(x)= [mm] (x^2+2)^4 [/mm]
c) f(x)= [mm] \bruch{3}{2+x^2} [/mm]
d) f(x)= [mm] \wurzel{x^2+1} [/mm]
e) f(x)=  [mm] \bruch{t}{(tx+1)^2} [/mm]
f) f(x)= [mm] cos(ax^2) [/mm]


Hallo,

ich bräuchte da mal eine Korrektur.


a) f'(x)= [mm] -15(6-5x)^2 [/mm] ; f''(x)= 150(6-5x)

b) f'(x)= [mm] 8x(x^2+2) [/mm] ; f''(x)= [mm] 24x^2+16 [/mm]

c) f'(x)= [mm] \bruch{-6x}{(2+x^2)^2} [/mm] ; f''(x)= [mm] \bruch{-12+18x^2}{(2+x^2)^2} [/mm]

d) f'(x)= [mm] \wurzel{x}(x^2+1) [/mm]  ;  f''(x)= [mm] (1/2)x+\wurzel{x}+2x*\wurzel{x} [/mm]

e) f'(x)= [mm] \bruch{1-2t^2}{(tx+1)^2} [/mm] ; f''(x)= [mm] \bruch{-1+4t^2}{x+1} [/mm]

f) f'(x)= [mm] -sin(ax^2)*2ax [/mm]  ;  f''(x)= - [mm] cos(ax^2)*4a^2x^2-sin(ax^2)*2a..man [/mm] könnte hier noch 2a ausklammern


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 17.10.2010
Autor: wieschoo


> Berechnen Sie f'(x) und f''(x).
>  
> a) f(x)= [mm](6-5x)^3[/mm]
>  b) f(x)= [mm](x^2+2)^4[/mm]
>  c) f(x)= [mm]\bruch{3}{2+x^2}[/mm]
>  d) f(x)= [mm]\wurzel{x^2+1}[/mm]
>  e) f(x)=  [mm]\bruch{t}{(tx+1)^2}[/mm]
>  f) f(x)= [mm]cos(ax^2)[/mm]
>  
> Hallo,
>  
> ich bräuchte da mal eine Korrektur.
>  
>
> a) f'(x)= [mm]-15(6-5x)^2[/mm] ; f''(x)= 150(6-5x)

[ok]

> b) f'(x)= [mm]8x(x^2+2)\red{^?}[/mm] ; f''(x)= [mm]24x^2+16[/mm]

[mm]8x(x^2+2)^3[/mm] wäre richtig. f''(x) ist auch falsch
[notok]

> c) f'(x)= [mm]\bruch{-6x}{(2+x^2)^2}[/mm] ; f''(x)=  [mm]\bruch{-12+18x^2}{(2+x^2)^\red{2}}[/mm]

[notok] in f'' hätte ich eine 3 statt der 2

> d) f'(x)= [mm]\wurzel{x}(x^2+1)[/mm]   ;  f''(x)=
> [mm](1/2)x+\wurzel{x}+2x*\wurzel{x}[/mm]

[notok] richtig: [mm]f'(x)={\frac {x}{\sqrt {{x}^{2}+1}}}[/mm]  f''(x) ist auch falsch

> e) f'(x)= [mm]\bruch{1-2t^2}{(tx+1)^2}[/mm] ; f''(x)=
> [mm]\bruch{-1+4t^2}{x+1}[/mm]

[notok] ich hätte [mm]f'(x)=-2\,{\frac {{t}^{2}}{ \left( tx+1 \right) ^{3}}}[/mm] und [mm]f''(x)=6\,{\frac {{t}^{3}}{ \left( tx+1 \right) ^{4}}}[/mm]

>  
> f) f'(x)= [mm]-sin(ax^2)*2ax[/mm]  ;

[ok]
  > f''(x)= - [mm]cos(ax^2)*4a^2x^2-sin(ax^2)*2a..man[/mm] könnte hier noch 2a

> ausklammern

[ok] [ok]
Ich habe [mm]f''(x)=-2\,a \left( 2\,\cos \left( a{x}^{2} \right) a{x}^{2}+\sin \left( a{x}^{2} \right) \right) [/mm]  


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 So 17.10.2010
Autor: Phoenix22

Hallo,

danke, ich habs nochmal versucht:

b) f''(x)= [mm] (x^2+2)^2*(8+48x^2) [/mm]

c) ja da muss eine 3 stehen, aber:
nachdem man [mm] (2+x^2) [/mm] gekürzt hat steht da ja:
[mm] -6(2+x^2)+24x^2 [/mm]
darf man dann nochmal die [mm] (2+x^2) [/mm] kürzen und dann würde rauskommen:
[mm] (-6+24x^2)/(2+x^2)^2 [/mm]
nur mal so aus interesse.

d) wie kommst du darauf? ich hab so gerechnet:

[mm] f'(x)=\bruch{1}{2\wurzel{x}}*(x^2+1)*2x [/mm]
und dann hab ich den ersten bruch mit 2x multipliziert und mit [mm] \wurzel{x} [/mm] erweitert und da kam bei mir einfach [mm] \wurzel{x} [/mm] raus.

e)
ja hast recht, ich hab vergessen dass die Ableitung von t, 0 ist weil man ja nach x auflöst =/



Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 So 17.10.2010
Autor: wieschoo


> Hallo,
>  
> danke, ich habs nochmal versucht:
>  
> b) f''(x)= [mm](x^2+2)^2*(8+48x^2)[/mm]

Wie kommt man auf so etwas?
[mm](8x(x^2+2)^3)'=8(x^2+2)^3+8x*3(x^2+2)^2*2x=\underline{\underline{8(x^2+2)^3+48x^2(x^2+2)^2}}[/mm]

>  
> c) ja da muss eine 3 stehen, aber:
>  nachdem man [mm](2+x^2)[/mm] gekürzt hat steht da ja:
>  [mm]-6(2+x^2)+24x^2[/mm]
>  darf man dann nochmal die [mm](2+x^2)[/mm] kürzen und dann würde
> rauskommen:

Das ist vielleicht ein Kauderwelsch. Richtig ist:

>  [mm](-6+24x^2)/(2+x^2)^2[/mm] [notok]
>  nur mal so aus interesse.

[mm](\frac{-6x}{(2+x^2)^2})'=\frac{(-6)*(2+x^2)^2\;\;-\;\;(-6x*2(2+x^2)*2x)}{(2+x^2)^4}=\frac{2+x^2}{2+x^2}*\frac{-6(2+x^2)\;\;+24x^2}{(2+x^2)^3}=\frac{18x^2-12}{(2+x^2)^3}=\frac{6(3x^2-2)}{(2+x^2)^3}[/mm]
Jetzt verstehe ich, was du kürzen möchtest. Also alles, was du ausklammer kannst, darfst du kürzen. (Bis auf die Null, die man auch nicht ausklammer kann)

>  
> d) wie kommst du darauf? ich hab so gerechnet:
>  
> [mm]f'(x)=\bruch{1}{2\wurzel{x}}*(x^2+1)*2x[/mm]
> und dann hab ich den ersten bruch mit 2x multipliziert und
> mit [mm]\wurzel{x}[/mm] erweitert und da kam bei mir einfach
> [mm]\wurzel{x}[/mm] raus.

Das halte ich für ein Gerücht!
[mm](\sqrt{x^2+1})'=((x^2+1)^{0.5})'=0.5*(x^2+1)^{\blue{-0.5}}*2x=\frac{0.5*2x}{(x^2+1)^{0.5}}=\frac{x}{\sqrt{x^2+1}}[/mm]

>  
> e)
>  ja hast recht, ich hab vergessen dass die Ableitung von t,
> 0 ist weil man ja nach x auflöst =/
>  
>  


Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 So 17.10.2010
Autor: Phoenix22

Naja man kommt bei b auf sowas indem man von deinem Ergenis [mm] (x^2+2)^2 [/mm] ausklammert?


zu d)

was meinst mit Gerücht? Man kanns aber doch so machen oder etwa nicht?

und wenn man das so macht wie du. wie kommt man darauf?
ich mein es heißt ja eigentlich so:

[mm] 0,5*x^{-0.5}*(x^2+1)*2x [/mm] ---> wie kann man da einfach das x mit [mm] (x^2+1) [/mm] ersetzen?

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 17.10.2010
Autor: wieschoo

Ein ganz Ruhig.

Sage mir genau, wo du [mm](x^2+2)^2 [/mm] ausklammern möchtest.
[mm] (\frac{-6x}{(2+x^2)^2})'=\frac{(-6)\cdot{}(2+x^2)^2\;\;-\;\;(-6x\cdot{}2(2+x^2)\cdot{}2x)}{(2+x^2)^4}=\frac{2+x^2}{2+x^2}\cdot{}\frac{-6(2+x^2)\;\;+24x^2}{(2+x^2)^3}=\frac{18x^2-12}{(2+x^2)^3}=\frac{6(3x^2-2)}{(2+x^2)^3} [/mm]

> was meinst mit Gerücht? Man kanns aber doch so machen oder etwa nicht?

Es ist falsch.

> ich mein es heißt ja eigentlich so: [mm] 0,5\cdot{}x^{-0.5}\cdot{}(x^2+1)\cdot{}2x [/mm]

Nein! Wie kommst du nur darauf?
Es gilt [mm](f(g(x)))'=f'(g(x))*g'(x)[/mm] (Kettenregel)
Also ist
[mm]\blue{f(x)=\sqrt{x}=x^{0.5}}[/mm] und [mm]\red{g(x)=x^2+1}[/mm].
Die Ableitungen sind
[mm]\green{f'(x)=0.5x^{-0.5}}[/mm] und [mm]{\color{cyan}g'(x)=2x}[/mm]
Insgesamt können wir jetzt die Kettenregel anwenden:
[mm]\blue{\sqrt{\red{x^2+1}}}=\blue{(\red{x^2+1})^{0.5}}=\blue{f(\red{g(x)})}[/mm]
Ableiten:
[mm](\blue{f(\red{g(x)})})'=\green{f'(\red{g(x)})}*{\color{cyan}g'(x)}=\green{0.5*(\red{x^2+1})^{-0.5}}*{\color{cyan}2x}[/mm]


[mm] (\sqrt{x^2+1})'=((x^2+1)^{0.5})'=0.5\cdot{}(x^2+1)^{\blue{-0.5}}\cdot{}2x=\frac{0.5\cdot{}2x}{(x^2+1)^{0.5}}=\frac{x}{\sqrt{x^2+1}} [/mm]

Bezug
                                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 17.10.2010
Autor: Phoenix22

Achsoo verdammt ich hab das ja völlig falsch abgeleitet mit der Wurzel! danke dir! =)


und du hast geschrieben:

Wie kommt man auf so etwas?
$ [mm] (8x(x^2+2)^3)'=8(x^2+2)^3+8x\cdot{}3(x^2+2)^2\cdot{}2x=\underline{\underline{8(x^2+2)^3+48x^2(x^2+2)^2}} [/mm] $

hier meinte ich das mit dem [mm] (x^2+2) [/mm] ausklammern.




Bezug
                                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 17.10.2010
Autor: wieschoo


> Achsoo verdammt ich hab das ja völlig falsch abgeleitet
> mit der Wurzel! danke dir! =)

>  
> [mm](8x(x^2+2)^3)'=8(x^2+2)^3+8x\cdot{}3(x^2+2)^2\cdot{}2x=\blue{\underline{\underline{8(x^2+2)^3+48x^2(x^2+2)^2}}}[/mm]
>  
> hier meinte ich das mit dem [mm](x^2+2)[/mm] ausklammern.
>  

Ja hier kann man sogar [mm](x^2+2)^2[/mm] ausklammer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de