www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Ableitungen
Ableitungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Quotientenregel...
Status: (Frage) beantwortet Status 
Datum: 18:45 Do 22.09.2005
Autor: Darkz

Hallo,
wer von euch kann mir erklären, wie ich folgende funktion ableite??:

[mm] g(x)=x^2*(x-1) [/mm] bruchstrich [mm] (2x+1)^2 [/mm]

(nur 1. ableitung!!!!)
Danke schon mal im vorraus.

ICQ:266-867-166
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 22.09.2005
Autor: Loddar

Hallo Darkz,

[willkommenmr] !!


Du meinst also : [mm]g(x) \ = \ \bruch{x^2*(x-1)}{(2x+1)^2}[/mm]

(Wenn Du die Formel mal anklickst, sieht Du die Schreibweise für den Bruch ...)


Wie Du in Deiner Überschrift bereits bemerkt hast, kommt hier die MBQuotientenregel zur Anwendung.


Als Besonderheit musst Du für die Ableitung des Zähler auch noch die MBProduktregel anwenden ...


Also ...

Nenner: $v \ = \ [mm] (2x+1)^2$ $\Rightarrow$ [/mm]   $v' \ = \ 2*(2x+1)*2 \ = \ 4*(2x+1)$
(Hier kam auch noch die MBKettenregel zur Anwendung).


Zähler: $u \ = \ [mm] x^2*(x-1)$ [/mm]

Wenn Du nichts mit der MBProduktregel zu tun haben möchtest ;-) , kannst Du hier auch gerne ausmultiplizieren: $u \ = \ [mm] x^3-x^2$ [/mm]

[mm] $\Rightarrow$ [/mm]   $u' \ = \ [mm] 3x^2-2x$ [/mm]


Alternative mit der MBProduktregel:

$f \ = \ [mm] x^2$ $\Rightarrow$ [/mm]   $f' \ = \ 2x$
$g \ = \ x-1$   [mm] $\Rightarrow$ [/mm]   $g' \ = \ 1$

[mm] $\Rightarrow$ [/mm]   $u' \ = \ f'*g + f*g' \ = \ 2x*(x-1) + [mm] x^2*1 [/mm] \ = \ [mm] 2x^2-2x+x^2 [/mm] \ = \ [mm] 3x^2-2x$ [/mm]


Diese ermittelten Terme nun mal in die MBQuotientenregel einsetzen.

Schaffst Du das?


Gruß
Loddar


Bezug
                
Bezug
Ableitungen: Wie weiter???Hilfe!!!
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 22.09.2005
Autor: Darkz

Hi Loddar
erst ma danke für die schnelle antwort!!!!
Aber jetzt hab ich die Terme in die Quotientenregel eingesetzt und nun kommt wieder nicht die richtige Lösung raus!!!!

die terme waren :
[mm] u(x)=x^2(x-1) [/mm]    
[mm] v(x)=(2x+1)^2 [/mm]
[mm] u'(x)=3x^2-2x [/mm]  
v(x)=4(2x+1)

oder hab ich einen fehlergemacht????
und wie geh ich mit der Klammer ^2 um(v(x))???auflösen????oder nicht??

Bezug
                        
Bezug
Ableitungen: Einsetzen
Status: (Antwort) fertig Status 
Datum: 20:21 Do 22.09.2005
Autor: MathePower

Hallo Darkz,

[willkommenmr]

> die terme waren :
>  [mm]u(x)=x^2(x-1)[/mm]    
> [mm]v(x)=(2x+1)^2[/mm]
>  [mm]u'(x)=3x^2-2x[/mm]  
> v(x)=4(2x+1)

das soll doch v'(x) heissen.

>  
> oder hab ich einen fehlergemacht????

nein, die Ableitungen stimmen alle.

>  und wie geh ich mit der Klammer ^2
> um(v(x))???auflösen????oder nicht??

Für v(x) wird [mm](2\;x\;+\;1)^{2}[/mm] eingesetzt.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de