www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen - t und n bestimme
Ableitungen - t und n bestimme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen - t und n bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mi 12.03.2008
Autor: MrWangster

Aufgabe
Bestimmen Sie die Steigungen der Tangente t und der Normalen n des Graphen der Funktion f im Berührpunkt [mm]P_{0}[/mm]. geben Sie die Gleichungen von t und n an.

a) [mm]f(x)=\bruch{4}{x+4};[/mm] [mm]P_{0}(4/\bruch{1}{2})[/mm]

b) [mm]f(x)=\wurzel{5-x};[/mm] [mm]P_{0}(1/2) [/mm]

Hallo,

bei den beiden Aufgaben komme ich nicht mehr weiter.

a) forme ich so um, dass die Gleichung zu [mm]4*(x+4)^{-1}[/mm] wird, aber ich weiß nicht, wie ich dann weiter machen soll.

bei b) habe ich die Gleichung zu [mm]5^{\bruch{1}{2}}-x^{\bruch{1}{2}}[/mm] umgeformt. Dann bilde ich die Ableitung und es kommt raus: [mm]f'(x)=-\bruch{1}{2}x^{-\bruch{1}{2}} [/mm]
[mm]f'(x)=-\bruch{1}{2}1^{-\bruch{1}{2}} [/mm]
[mm]f'(x)=-\bruch{1}{2}[/mm]

Könnt ihr mir weiterhelfen? Sollte ich das vielleicht mit [mm] f'(x)=\bruch{f(h+x_{0})-f(x_{0})}{h}[/mm] ausrechnen?

Gruß,
MrWangster

        
Bezug
Ableitungen - t und n bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 12.03.2008
Autor: Andi

Hallo,

> a) forme ich so um, dass die Gleichung zu [mm]4*(x+4)^{-1}[/mm]
> wird, aber ich weiß nicht, wie ich dann weiter machen
> soll.

Naja .... ich würd jetzt ableiten :-).

Was kennst du denn für MBAbleitungsregeln?
Du hättest die MBQuotientenregel benutzen können, aber nach deiner schönen Umformung kannst du auch die MBPotenzregel benutzen.

> bei b) habe ich die Gleichung zu
> [mm]5^{\bruch{1}{2}}-x^{\bruch{1}{2}}[/mm] umgeformt. Dann bilde

Oh das ist leider falsch. Rechne mal: [mm] \wurzel{4+9}[/mm] und [mm]\wurzel{4}+\wurzel{9}[/mm] aus und vergleiche die Ergebnisse.

[mm]f(x)=(5-x)^{\bruch{1}{2}}[/mm]
Um das Abzuleiten brauchst du die MBPotenzregel und die MBKettenregel.

> Könnt ihr mir weiterhelfen? Sollte ich das vielleicht mit
> [mm]f'(x)=\bruch{f(h+x_{0})-f(x_{0})}{h}[/mm] ausrechnen?

Das stimmt so nicht.

[mm]f'(x)=\limes_{h\rightarrow0}\bruch{f(h+x_{0})-f(x_{0})}{h}[/mm]
So wäre es richtig, ist aber unnötig.

Ich hoffe ich konnte ein wenig weiterhelfen.

Mit freundlichen Grüßen,
Andi

Bezug
                
Bezug
Ableitungen - t und n bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mi 12.03.2008
Autor: MrWangster

Hallo Andi! Vielen Dank für deine Antwort!

Die Kettenregel haben wir noch nicht durchgenommen, aber ich hab sie mir mal angeguckt und bin zu diesen Ergebnissen gekommen:

a)[mm]f(x)=4*(x+4)^{-1}[/mm]
[mm]f'(x)=4*1*(-1)*(x+4)^{-2}[/mm]
[mm]f'(x)=-4(x+4)^{-2}[/mm]
[mm]f'(x)=\bruch{-4}{(x+4)^{2}}[/mm]

b)[mm]f(x)=(5-x)^{\bruch{1}{2}}[/mm]
[mm]f'(x)=-1*\bruch{1}{2}*(5-x)^{-\bruch{1}{2}} [/mm]
[mm]f'(x)=-\bruch{1}{2}(5-x)^{\bruch{1}{2}} [/mm]
[mm]f'(x)=\bruch{-\bruch{1}{2}}{(5-x)^{\bruch{1}{2}}} [/mm]
[mm]f'(x)=\bruch{-\bruch{1}{2}}{\wurzel{5-x}}[/mm]

Stimmen die Ergebnisse?

Gruß,
MrWangster

Bezug
                        
Bezug
Ableitungen - t und n bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 12.03.2008
Autor: XPatrickX


> Hallo Andi! Vielen Dank für deine Antwort!

Hey!

>  
> Die Kettenregel haben wir noch nicht durchgenommen, aber
> ich hab sie mir mal angeguckt und bin zu diesen Ergebnissen
> gekommen:
>  
> a)[mm]f(x)=4*(x+4)^{-1}[/mm]
>  [mm]f'(x)=4*1*(-1)*(x+4)^{-2}[/mm]
>  [mm]f'(x)=-4(x+4)^{-2}[/mm]
>  [mm]f'(x)=\bruch{-4}{(x+4)^{2}}[/mm]
>  
> b)[mm]f(x)=(5-x)^{\bruch{1}{2}}[/mm]
>  [mm]f'(x)=-1*\bruch{1}{2}*(5-x)^{-\bruch{1}{2}}[/mm]
>  [mm]f'(x)=-\bruch{1}{2}(5-x)^{\red{-}\bruch{1}{2}}[/mm]
>  [mm]f'(x)=\bruch{-\bruch{1}{2}}{(5-x)^{\bruch{1}{2}}}[/mm]
>  [mm]f'(x)=\bruch{-\bruch{1}{2}}{\wurzel{5-x}}[/mm]

[mm] \red{=\bruch{-1}{2*\wurzel{5-x}}} [/mm]

>  
> Stimmen die Ergebnisse?
>  

Ja, es stimmt alles [daumenhoch]

> Gruß,
>  MrWangster

Gruß Patrick

Bezug
                                
Bezug
Ableitungen - t und n bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 12.03.2008
Autor: MrWangster

Vielen Dank Patrick! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de