www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitungen(Wurzeln,E-funktion
Ableitungen(Wurzeln,E-funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen(Wurzeln,E-funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Do 31.01.2008
Autor: ronin1987

Aufgabe
gegeben sei die Funktion y= [mm] \bruch{x}{e^{x}} [/mm]

Diskutieren und skizzieren Sie!

Also meine Frage richtet sich zuerst an die Ableitungen, an denen ich mich gerade versucht habe.

y´= [mm] \bruch{e^{x}-x*e^{x}}{e^{2x}} [/mm]

demnach ist

y´´= [mm] \bruch{xe^{x}-e^{x}+xe^{x}*e^{2x}-e^{x}-xe^{x}*2e^{2x}}{e^{4x}} [/mm]

ist das richtig so? Mir fällt es nämlich ziemlich schwer, die Ableitungen zu kombinieren. ich weiss, die Frage fällt ein bisschen aus dem Rahmen, aber was kann ich denn schon alleine aus der Funktion an sich entnehmen? Für mich sieht es ao aus, als würde y immer kleiner, ist die Annahme richtig?

Liebe Grüße, Sebastian

        
Bezug
Ableitungen(Wurzeln,E-funktion: zur Ableitung
Status: (Antwort) fertig Status 
Datum: 12:59 Do 31.01.2008
Autor: Roadrunner

Hallo Sebastian!


> y´= [mm]\bruch{e^{x}-x*e^{x}}{e^{2x}}[/mm]

[ok] Aber ich würde hier auf jeden Fall im Zähler [mm] $e^x$ [/mm] ausklammern und kürzen, so dass verbleibt:
$$y' \ = \ [mm] \bruch{1-x}{e^x}$$ [/mm]


> demnach ist
>
> y´´= [mm]\bruch{xe^{x}-e^{x}+xe^{x}*e^{2x}-e^{x}-xe^{x}*2e^{2x}}{e^{4x}}[/mm]

Die habe ich jetzt nicht kontrolliert ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Ableitungen(Wurzeln,E-funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Do 31.01.2008
Autor: Tyskie84

Hallo!

Es ist [mm] y=\bruch{x}{e^{x}} [/mm] Deine Ableitung ist völlig richtig aber aber kürze dein [mm] e^{x} [/mm] dann wird die zweite ableitung einfacher. Deine 2. Ableitung so wie du sie stehen hast sind in ordnung aus aber fasse doch [mm] xe^{x}*e^{2x} [/mm] zusammen es ist doch [mm] xe^{3x}. [/mm] Wenn du in der ersten abelitung gekürzt hast so wie ich es gesagt habe dann solltest du auf [mm] y''=\bruch{x-2}{e^{x}} [/mm] kommen.
Nun sollst du die Funktion diskutieren. Also Nullstellen berechnen, Limites, Extrema, Wendepunkte, Syymmetrie etc. Und aus der Diskussion sollte es dir möglich sein deine Funktion zu skizzieren.

[cap] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de