www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungen im R
Ableitungen im R < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen im R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Sa 29.06.2013
Autor: Flauschfussel

Aufgabe
Die Ableitung von f:(a,b) [mm] \to \IC [/mm] in [mm] x\in(a,b) [/mm] ist definiert als
f'(x)= [mm] \limes_{h\rightarrow\ 0} \bruch{f(x+h)-f(x)}{h}= \limes_{y\rightarrow\ x} \bruch{f(x)-f(y)}{y-x} [/mm] falls der Grenzwert existiert. Dann heißt f differenzierbar in x.

a) Berechnen Sie direkt mit der obigen Definition die Ableitungen der folgenden Funktionen in einem beliebigen Punkt [mm] x\in \IR: [/mm]

i) [mm] f(x)=a^{x } [/mm] für a>0 (Potenzgesetze und [mm] \limes_{z\rightarrow\ 0} \bruch{e^{z}-1}{z}=1 [/mm] wobei [mm] z\in \IC) [/mm]

Hallo zusammen :)

ich habe bei der Aufgabe erstmal alles in die Definition eingesetzt und hingeschrieben:

[mm] f(x)=a^{x} [/mm] = [mm] e^{x log (a)} [/mm]

[mm] f'(x)=\limes_{h\rightarrow\ 0} \bruch{e^{(x+h) log (a)}-e^{x log (a)}}{h} [/mm]

[mm] =\limes_{h\rightarrow\ 0} \bruch{e^{x log (a)}*e^{h log (a)}-e^{x log (a)}}{h} [/mm]

[mm] =\limes_{h\rightarrow\ 0} \bruch{e^{x log (a)}(e^{h log (a)}-1)}{h} [/mm]

[mm] =\limes_{h\rightarrow\ 0} e^{x log (a)}*\bruch{e^{h log (a)}-1}{h} [/mm]

[mm] =\limes_{h\rightarrow\ 0} e^{x log (a)}*\bruch{e^{h ^{log (a)}}-1}{h} [/mm]

Nun ja, dass sieht ja fast schon so aus, dass ich [mm] \limes_{h\rightarrow\ 0} \bruch{e^{h}-1}{h}=1 [/mm] anwenden kann. Nur komme ich da nicht so recht weiter. Vielleicht hat ja noch jemand einen Tipp für mich, der mir weiter hilft :)

Schöne Grüße,
Flauschfussel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungen im R: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Sa 29.06.2013
Autor: MathePower

Hallo Flauschfussel,

> Die Ableitung von f:(a,b) [mm]\to \IC[/mm] in [mm]x\in(a,b)[/mm] ist
> definiert als
>  f'(x)= [mm]\limes_{h\rightarrow\ 0} \bruch{f(x+h)-f(x)}{h}= \limes_{y\rightarrow\ x} \bruch{f(x)-f(y)}{y-x}[/mm]
> falls der Grenzwert existiert. Dann heißt f
> differenzierbar in x.
>  
> a) Berechnen Sie direkt mit der obigen Definition die
> Ableitungen der folgenden Funktionen in einem beliebigen
> Punkt [mm]x\in \IR:[/mm]
>  
> i) [mm]f(x)=a^{x }[/mm] für a>0 (Potenzgesetze und
> [mm]\limes_{z\rightarrow\ 0} \bruch{e^{z}-1}{z}=1[/mm] wobei [mm]z\in \IC)[/mm]
>  
> Hallo zusammen :)
>  
> ich habe bei der Aufgabe erstmal alles in die Definition
> eingesetzt und hingeschrieben:
>  
> [mm]f(x)=a^{x}[/mm] = [mm]e^{x log (a)}[/mm]
>  
> [mm]f'(x)=\limes_{h\rightarrow\ 0} \bruch{e^{(x+h) log (a)}-e^{x log (a)}}{h}[/mm]
>  
> [mm]=\limes_{h\rightarrow\ 0} \bruch{e^{x log (a)}*e^{h log (a)}-e^{x log (a)}}{h}[/mm]
>  
> [mm]=\limes_{h\rightarrow\ 0} \bruch{e^{x log (a)}(e^{h log (a)}-1)}{h}[/mm]
>  
> [mm]=\limes_{h\rightarrow\ 0} e^{x log (a)}*\bruch{e^{h log (a)}-1}{h}[/mm]
>  
> [mm]=\limes_{h\rightarrow\ 0} e^{x log (a)}*\bruch{e^{h ^{log (a)}}-1}{h}[/mm]
>  
> Nun ja, dass sieht ja fast schon so aus, dass ich
> [mm]\limes_{h\rightarrow\ 0} \bruch{e^{h}-1}{h}=1[/mm] anwenden
> kann. Nur komme ich da nicht so recht weiter. Vielleicht
> hat ja noch jemand einen Tipp für mich, der mir weiter
> hilft :)
>  


Den auftretetenden Ausdruck kannst Du doch so schreiben:

[mm]\bruch{e^{h*{log (a)}}-1}{h}=\blue{log(a)}*\bruch{e^{h*{log (a)}}-1}{h*\blue{log(a)}}[/mm]

Damit kannst Du nun die Aufgabe lösen.


> Schöne Grüße,
>  Flauschfussel
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Ableitungen im R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Sa 29.06.2013
Autor: Flauschfussel


> Den auftretetenden Ausdruck kannst Du doch so schreiben:
>  
> [mm]\bruch{e^{h*{log (a)}}-1}{h}=\blue{log(a)}*\bruch{e^{h*{log (a)}}-1}{h*\blue{log(a)}}[/mm]
>  
> Damit kannst Du nun die Aufgabe lösen.
>
>
> Gruss
>  MathePower

Oh natürlich :) was hab ich da bitte für ein großes Brett vor dem Kopf gehabt :D Danke für die Hilfe MathePower :) die Ableitung stimmt jetzt :)

Schönen Abend noch :)


Bezug
                        
Bezug
Ableitungen im R: Natürlicher Logarithmus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Sa 29.06.2013
Autor: Triops

Hi Flauschfussel,

achte bitte beim nächsten Mal darauf, zu welcher Basis du Deinen Logarithmus aufstellst.

Dein Ausdruck
$f(x) = [mm] a^{x} [/mm] = [mm] e^{x*log(a)}$ [/mm] ist insofern unvollständig, weil wir hier den natürlichen Logarithmus vorliegen haben.

Folglich ist
$f(x) = [mm] a^{x} [/mm] = [mm] e^{x*log_{e}(a)} [/mm] = [mm] e^{x*ln(a)}$ [/mm]
die korrekte Schreibweise.

Gruß

Tenzing

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de