www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ableitungen nachweisen
Ableitungen nachweisen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Mi 09.11.2005
Autor: GetBack

Hallo Leute,
ich hab da mal wieder ein Problem. Es geht um folgendes:
Ich soll für alle [mm] n \in \mathbb{N} [/mm] folgende Gleichungen bestätigen
[mm] {d^j \over dx^j} \left(x^2 -1 \right)^n = 0 [/mm] für [mm] 0 \le j < n, x=\pm 1 [/mm] und [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm]
An Beispielen habe ich mir angeschaut, dass diese Gleichungen stimmen, aber wie kann ich diese nachweisen?
Ich habe auch versucht unterschiedlich an die Aufgabe ranzugehen: Zuerst versuchte ich es nur über Ableitungen und dann über die binomische Formel [mm] \left(x^2 -1 \right)^n = \sum_{k=0}^n {(-1)^k {n \choose k} x^{2(n-k)}} [/mm] und dann erst über die Ableitung. Aber beide Wege liefen bei mir ins Leere.
Könnt ihr mir da helfen? Vielen Dank schonmal im Voraus.

GetBack

        
Bezug
Ableitungen nachweisen: Tipp
Status: (Antwort) fertig Status 
Datum: 13:33 Mi 09.11.2005
Autor: banachella

Hallo!

Hast du es schon mal mit vollständiger Induktion versucht? Mit Hilfe der Produktformel sollte das eigentlich zum Ziel führen...

Gruß, banachella

Bezug
                
Bezug
Ableitungen nachweisen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:07 Mi 09.11.2005
Autor: GetBack

Hallo Banachella,

danke für deinen Tipp. Die erste Gleichung kann ich durch vollständige Induktion über j recht einfach lösen. Aber die zweite Gleichung bereitet mir immer noch Kopfzerbrechen. Ich schreibe einfach mal, was ich schon habe:

Beweis durch vollständige Induktion über n von [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm]
IA: n=1: [mm] {d \over dx} \left(x^2 -1 \right) = 2x [/mm] dann folgt für [mm] x=1: \quad 2=2^1 \cdot 1! [/mm]
IV: [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm] gelte für ein [mm] n \in \mathbb{N} [/mm].
IS:
[mm] {d^{n+1} \over dx^{n+1}} \left(x^2 -1 \right)^{n+1} = {d^{n+1} \over dx^{n+1}} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( {d \over dx} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right) \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n+1 \choose k} \cdot 2(n+1-k) \cdot x^{2(n+1-k)-1}} \right)[/mm]
[mm]= 2 (n+1) \cdot {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n \choose k} x^{2(n-k)+1}} \right) [/mm]

Wie man sieht, habe ich in der Summe ein x zuviel! Habe ich da einen Fehler gemacht oder fehlt mir einfach noch ein Schritt?

GetBack

Bezug
                        
Bezug
Ableitungen nachweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Sa 12.11.2005
Autor: Loddar

Hallo GetBack!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de