www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitungen von Logarithmusfkt
Ableitungen von Logarithmusfkt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen von Logarithmusfkt: Erklärung + Hilfe
Status: (Frage) beantwortet Status 
Datum: 18:29 So 10.02.2008
Autor: Manooo

Aufgabe
Ich habe folgende Aufaben zu lösen, jedoch fehlt mir völlig das Verständnis:

1. und 2.Ableitung von:

f(x)=ln(x+1)  
f(x)=log2 x+x+2
f(x)=log3 [mm] x+3^x [/mm]
f(x)=2ln(2x)
f(t)=ln(1+kt)
h(t)=0,5ln(t/3 -1)

ich weiß, dass die Ableitung der natürlichen Logarithmusfunktion mit f(x)=ln x -> f´(x)= 1/x ist

Wie gehe ich an diese Aufgaben heran?
Welche Regeln muss ich beachten?

        
Bezug
Ableitungen von Logarithmusfkt: Kettenregel
Status: (Antwort) fertig Status 
Datum: 18:34 So 10.02.2008
Autor: M.Rex

Hallo

Hier brauchst du eigentlich durchweg die Kettenregel

Marius

Bezug
                
Bezug
Ableitungen von Logarithmusfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 10.02.2008
Autor: Manooo

Mhhh und wie sieht das dann bei der ersten Teilaufgabe aus?

f(x)= ln(x+1)

da ln(1)=0 ist muss dann eigentlich

f´(x)= 1/x sein oder?

f´´(x)= -1 / [mm] x^2 [/mm]

???



Bezug
                        
Bezug
Ableitungen von Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 10.02.2008
Autor: abakus


> Mhhh und wie sieht das dann bei der ersten Teilaufgabe
> aus?
>  
> f(x)= ln(x+1)

Äußere Ableitung: [mm] \bruch{1}{x+1} [/mm]

Innere Ableitung : 1+0 = 1

f'(x)= [mm] 1*\bruch{1}{x+1}=\bruch{1}{x+1} [/mm]

>  
> da ln(1)=0 ist muss dann eigentlich
>  
> f´(x)= 1/x sein oder?
>  
> f´´(x)= -1 / [mm]x^2[/mm]
>  
> ???
>  
>  


Bezug
                                
Bezug
Ableitungen von Logarithmusfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 So 10.02.2008
Autor: Manooo

Kann mir das bitte nochmal einer an diesem Beispiel mit innerer und äußerer Kettenregel erklären? Werde daraus irgendwie nicht schlau!

Bezug
        
Bezug
Ableitungen von Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 So 10.02.2008
Autor: Bastiane

Hallo Manooo!

> f(x)=ln(x+1)  
> f(x)=log2 x+x+2
>  f(x)=log3 [mm]x+3^x[/mm]
>  f(x)=2ln(2x)
>  f(t)=ln(1+kt)
>  h(t)=0,5ln(t/3 -1)
>  
> ich weiß, dass die Ableitung der natürlichen
> Logarithmusfunktion mit f(x)=ln x -> f´(x)= 1/x ist
>  Wie gehe ich an diese Aufgaben heran?
> Welche Regeln muss ich beachten?

Ok, also nochmal. Bei der Kettenregel berechnest du die Ableitung als Produkt von äußerer und innerer Ableitung. Deine erste Funktion hat als äußere Funktion die Funktion [mm] f(z)=\ln(z), [/mm] die innere Funktion ist f(x)=x+1. Also gilt [mm] f'(z)=\frac{1}{z} [/mm] und f'(x)=1. Wenn du nun beides multiplizierst, erhältst du:

[mm] f'(x)=(\ln(x+1))'=\frac{1}{x+1}*1=\frac{1}{x+1} [/mm]

Habt ihr denn die MBKettenregel noch nicht an anderen Beispielen geübt?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ableitungen von Logarithmusfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 So 10.02.2008
Autor: Manooo

Wunderbar das ist mir dann soweit klar!
Geh ich recht in der Annhame dass man für die zweite Ableitung eine andere Regel anwenden muss? QUOTIENTENREGEL?

Bezug
                        
Bezug
Ableitungen von Logarithmusfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 10.02.2008
Autor: Manooo

Bitte noch eine Hilfestellung!

Wie mach ich weiter um die 2te Ableitung zu erhalten?


Bezug
                                
Bezug
Ableitungen von Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 10.02.2008
Autor: Steffi21

Hallo, es gibt zwei Möglichkeiten:

1) [mm] \bruch{1}{(x+1)}=(x+1)^{-1} [/mm] Ableitung über Potenzregel

2) [mm] \bruch{1}{(x+1)} [/mm] Ableitung über Quotientenregel u=1; v=x+1

Steffi

Bezug
                                
Bezug
Ableitungen von Logarithmusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 So 10.02.2008
Autor: Gogeta259

Hi!

Ich hoffe du willst die zweite ableitung von
f(x)=ln(x+1):

Die erste Ableitung lautet ja (kettenregel):
[mm] f'(x)=\bruch{1}{x+1}*(1) [/mm]

Für die zweite Ableitung kannst du die Quotientenregel, verwenden, aber du kannst Auch die Kettenregel verwenden(x+1 in einer 1/u funktion).
[mm] f''(x)=-\bruch{1}{(x+1)^2}*1 [/mm]

oder du schreibst f'(x) zu [mm] f'(x)=(x+1)^{-1} [/mm] um
und wendest die Kettenregel an (x+1 in einer Potenzfunktion):
[mm] f''(x)=(-1)*(x+1)^{-2}*(1)=-\bruch{1}{(x+1)^2} [/mm]

Kommt in beiden Fällen das Selbe raus, du musst halt schauen welcher weg dir am besten liegt(aber Quotientenregel ist hier nicht unbedingt nötig).

Ich hoffe ich konnte dir irgendwie weiterhelfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de