www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungs-Funktion herleiten
Ableitungs-Funktion herleiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungs-Funktion herleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Fr 21.08.2009
Autor: Phil92

Hallo,
nach den Sommerferien wollte ich meine Mathekenntnisse nochmal auffrischen, und entdeckte dabei leider ein Problem. Nehmen wir z.B. die Funktion f(x)=3x³+4x²-7x+5. Ich weiß, dass die Ableitung, also f'(x) lautet: 9x²+8x-7. Auch weiß ich, wie man die Steigungsformel bildet:

m = f(x+h)-f(x)
          x+h-x

m = f(x+h)-f(x)
            h

So. Jetzt kommt mein Problem. Wie kann ich jetzt eine Formel erstellen, mit der man die Ableitung der oben genannten Funktion berechnen kann? Ich weiß nämlich überhaupt nicht mher, was ich nun wo von der Funktion einsetzen muss. Ich wäre super dankbar für jegliche Hilfestellung(en).

Philipp

        
Bezug
Ableitungs-Funktion herleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 21.08.2009
Autor: notinX

Wenn ich Dich richtig verstanden habe, möchtest Du die Ableitung der Funktion [mm] $f(x)=3x^3+4x^2-7x+5$ [/mm] mittels Differentialquotienten bestimmen.
Der Differentialquotient (welcher er Ableitung im Punkt [mm] x_0 [/mm] entspricht) lautet: [mm] $f'(x_0)=\lim_{x\rightarrow x_0} \frac {f(x)-f(x_0)} {x-x_0}$ [/mm] bzw. [mm] $f'(x_0)=\lim_{h\rightarrow 0} \frac {f(x_0+h)-f(x_0)} [/mm] {h}$ Welche der beiden Definitionen man verwendet ist reine Geschmackssache.
Da Du de Ableitungsfunktion bestimmen möchtest, wählen wir einen beliebigen Wert für [mm] x_0=a. [/mm]
Jetzt können wir das ganze in den Differentialquotienten einsetzen:
[mm] $\lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{h}=\lim_{h\rightarrow 0}\frac{3(a+h)^3+4(a+h)^2-7(a+h)+5-(3a^3+4a^2-7a+5)}{h}$ [/mm]
Jetzt ausmultiplizieren und zusammenfassen:
[mm] $\lim_{h\rightarrow 0}\frac{3a^3+9a^2h+4a^2+9ah^2+8ah-7a+3h^3+4h^2-7h+5-(3a^3+4a^2-7a+5)}{h}=\lim_{h\rightarrow 0}\frac{9a^2h+9ah^2+8ah+3h^3+4h^2-7h}{h}$ [/mm]

[mm] $=\lim_{h\rightarrow 0}(9a^2+9ah+8a+3h^2+4h-7)=9a^2+8a-7$ [/mm]
und es kommt tatsächlich die Ableitungsfunktion heraus.


Bezug
                
Bezug
Ableitungs-Funktion herleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Sa 22.08.2009
Autor: Phil92

Danke Danke Danke !!!

Du hast mir wirklich geholfen :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de