www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungsbestimmung!
Ableitungsbestimmung! < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsbestimmung!: Rückfrage!
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 06.12.2006
Autor: Blackpearl

Aufgabe
Bestimmung der Ableitung mit der h-Methode!

Hallo Leute,

Ich sitze gerade hier und lerne für meine demnächst anstehende Mathe Klausur.
Mein Problem -> in meinem Heft stehen die Themenbereiche nun finde ich aber nichts genaues mehr ueber dieses Thema!

Hier steht:
"Themen der Klausur:
...
- Bestimmung der Ableitung mithilfe der h-Methode.
..."
Könntet ihr mir helfen. Ich bräuchte da mal ein paar kleine Aufgaben um mir deutlich zu machen worum es geht.

Danke :P

Eure BlacKky

        
Bezug
Ableitungsbestimmung!: h-Methode
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 06.12.2006
Autor: Loddar

Hallo Blackpearl!


Unter der h-Methode versteht man die Ermittlung der Ableitung mittels Differenzenquotienten in der Form:

[mm] $f'(x_0) [/mm] \ := \ [mm] \limes_{h\rightarrow 0}\bruch{f(x_0+h)-f(x_0)}{h}$ [/mm]


[guckstduhier] für Beispiel :  https://matheraum.de/read?t=205885
Ansonsten hier mal etwas stöbern im Matheraum (Forum: Differenzialrechnung).


Gruß
Loddar


Bezug
                
Bezug
Ableitungsbestimmung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Mi 06.12.2006
Autor: Blackpearl

Ich schau ma rein!

Danke für deine Express-Antwort! :D

Bezug
        
Bezug
Ableitungsbestimmung!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 06.12.2006
Autor: MontBlanc

Hi,
zur verdeutlichung hier ein Beispiel:

[mm] f(x):=\bruch{1}{2}*x^{2} x_{0}=2 [/mm]

[mm] m(h)=\bruch{f(x_{0}+h)-f(x_{0})}{h} [/mm]

[mm] m(h)=\bruch{\bruch{1}{2}*(2+h)^{2}-2}{h} [/mm]

[mm] m(h)=2+\bruch{1}{2}*h $\rightarrow [/mm] 2$  für $h [mm] \rightarrow [/mm] 0$

Das bedeutet jetzt, dass die Steigung für $h [mm] \rightarrow [/mm] 0$ 2 beträgt, d.h die Steigung im Punkt [mm] x_{0}=2 [/mm] ist gleich 2

Hoffe dass dir das weiter geholfen hat.

Bis denne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de